Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with
a single positive integer N on a line by itself, indicating the size of
the square two-dimensional array. This is followed by N^2 integers
separated by whitespace (spaces and newlines). These are the N^2
integers of the array, presented in row-major order. That is, all
numbers in the first row, left to right, then all numbers in the second
row, left to right, etc. N may be as large as 100. The numbers in the
array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
1 #include<cstdio> 2 #include<string.h> 3 using namespace std; 4 int map[120][120]; 5 int main() 6 { 7 int n; 8 int flag; 9 int sum; 10 while(scanf("%d",&n)!=EOF) 11 { 12 memset(map,0,sizeof(map)); 13 for(int i=1; i<=n; i++) 14 for(int j=1; j<=n; j++) 15 { 16 scanf("%d",&flag); 17 map[i][j]+=map[i][j-1]+flag;//先计算每一行的前J列的和 18 for(int i=1; i<=n; i++) 19 for(int j=1; j<=i; j++)//确定子矩阵的左右边界 20 { 21 int sum=0; 22 for(int k=1; k<=n; k++)//行数 23 { 24 if(sum<0) 25 sum=0;//如果前几行的和是小于0的,就令sum=0;因为负数越加越小。 26 sum+=(map[k][i]-map[k][j-1]);//一行一行地加起来,第k行的[i,j]列 27 if(sum>max) 28 max=sum;//找出最大值!!! 29 } 30 31 } 32 printf("%d\n",max); 33 } 34 return 0; 35 }