图像梯度

 清晰图像和模糊图像之间的差别在哪里呢?

  从逻辑上考虑,图像模糊是因为图像中物体的轮廓不明显,轮廓边缘灰度变化不强烈,层次感不强造成的

 

反过来考虑,轮廓边缘灰度变化明显些,层次感强些是不是图像就更清晰些呢。

 

那么,这种灰度变化明显不明显怎样去定义呢?

  知道微分就是求函数的变化率,即导数(梯度),那么对于图像来说,可不可以用微分来表示图像灰度的变化率呢,当然是可以的,前面我们提到过,图像就是函数嘛。

 

 

  因为图像是一个离散的二维函数,ϵϵ不能无限小,我们的图像是按照像素来离散的,最小的ϵϵ就是1像素。因此,上面的图像微分又变成了如下的形式(ϵ=1ϵ=1):

  这分别是图像在(x, y)点处x方向和y方向上的梯度,从上面的表达式可以看出来,图像的梯度相当于2个相邻像素之间的差值。

 

图片演示梯度过程

  我们先考虑下x方向,选取某个像素,假设其像素值是100,沿x方向的相邻像素分别是90,90,90,则根据上面的计算其x方向梯度分别是10,0,0。这里只取变化率的绝对值,表明变化的大小即可。 

 

   

  我们看到,100和90之间亮度相差10,并不是很明显,与一大群90的连续灰度值在一起,轮廓必然是模糊的。我们注意到,如果相邻像素灰度值有变化,那么梯度就有值,如果相邻像素灰度值没有变化,那么梯度就为0。如果我们把梯度值与对应的像素相加,那么灰度值没有变化的,像素值不变,而有梯度值的,灰度值变大了。

  我们看到,相加后的新图像,原图像像素点100与90亮度只相差10,现在是110与90,亮度相差20了,对比度显然增强了,尤其是图像中物体的轮廓和边缘,与背景大大加强了区别,这就是用梯度来增强图像的原理。

 

二 索贝尔算子

代码

import cv2 as cv

#图像梯度:索贝尔算子
def sobel_image(image):
    grad_x=cv.Sobel(image,cv.CV_32F,1,0) #x方向导数
    grad_y=cv.Sobel(image,cv.CV_32F,0,1) #y方向导数
    gradx=cv.convertScaleAbs(grad_x) #颜色变化在水平分层
    grady=cv.convertScaleAbs(grad_y) #颜色变化在垂直分层
    cv.imshow("X方向", gradx)  # 颜色变化在水平分层
    cv.imshow("Y方向", grady)  # 颜色变化在垂直分层
    gradxy=cv.addWeighted(gradx,0.5,grady,0.5,0)
    cv.imshow('merge',gradxy)


src = cv.imread("ying.jpg")
cv.imshow("before", src)
sobel_image(src)
cv.waitKey(0)
cv.destroyAllWindows()

 

效果展示

 

三 scharr算子

代码

import cv2 as cv

#图像梯度:scharr算子:增强边缘
def scharr_image(image):
    grad_x = cv.Scharr(image, cv.CV_32F, 1, 0)#x方向导数
    grad_y = cv.Scharr(image, cv.CV_32F, 0, 1)#y方向导数
    gradx = cv.convertScaleAbs(grad_x)
    grady = cv.convertScaleAbs(grad_y)
    cv.imshow("X -go", gradx)#颜色变化在水平分层
    cv.imshow("Y -go", grady)#颜色变化在垂直分层
    gradxy = cv.addWeighted(gradx, 0.5, grady, 0.5, 0)
    cv.imshow("merge", gradxy)

src = cv.imread("ying.jpg")
cv.imshow("before", src)
scharr_image(src)
cv.waitKey(0)
cv.destroyAllWindows()

 

效果展示

 

 四 拉普拉斯算子

代码

import cv2 as cv

#图像梯度:scharr算子:增强边缘
def lapalian_image(image):
    dst=cv.Laplacian(image,cv.CV_32F)
    lpls=cv.convertScaleAbs(dst)
    cv.imshow('lpls',lpls)

src = cv.imread("ying.jpg")
cv.imshow("before", src)
lapalian_image(src)
cv.waitKey(0)
cv.destroyAllWindows()

 

效果展示

 

 

posted @ 2019-07-15 10:34  柳帅  阅读(1735)  评论(0编辑  收藏  举报
//替换成自己路径的js文件