[CF] CF156C Cipher

Description

\(Link\)

Solution

\(a\sim{z}\)看成\(1\sim26\)。注意到不断把前一个数\(+1\),后一个数\(-1\)或者把前一个数\(-1\),后一个数\(+1\),它们的和总是不变。且对于每个和相等的数列,我们总能通过若干次上述操作把它们转化成一样的。从而,问题就变成了\(n\)\(1\sim26\)的数和为\(s\)的方案。

首先有\(O(n^226^2)\)\(dp\):设\(dp[i][j]\)表示前\(i\)个数和为\(j\)的方案数。那么\(dp[i][j]\leftarrow{dp[i-1][j-k]}\)

然后有\(O(n)\)的容斥(\(O(26n)\)预处理)

如果没有每个数\(\in[1,26]\)的限制,答案就直接是\(\dbinom{s-1}{n-1}\)(插板法)

现在有了这个限制,考虑容斥:我们钦定给\(i\)个数预先分配\(26\),那么至少有\(i\)个数不合法,对答案的贡献就为\((-1)^i\)(总方案数减去至少有一个不合法的,加上至少有两个不合法的。。。),相当于给\(i\)个数预先分配\(26\)再做正常的不定方程求解。

故答案为

\[\sum\limits_{i=0}^n(-1)^i\dbinom{n}{i}\dbinom{s-26i-1}{n-1} \]

Code

#include <bits/stdc++.h>

using namespace std;

#define ll long long

const int lim = 2600;
const ll mod = 1e9 + 7;

int t, n;

char ch[105];

ll fac[2605], inv[2605];

int read()
{
	int x = 0, fl = 1; char ch = getchar();
	while (ch < '0' || ch > '9') { if (ch == '-') fl = -1; ch = getchar();}
	while (ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + ch - '0'; ch = getchar();}
	return x * fl;
}

ll qpow(ll base, ll pw)
{
	ll s = 1;
	while (pw)
	{
		if (pw & 1) s = s * base % mod;
		base = base * base % mod;
		pw >>= 1;
	}
	return s;
}

ll C(ll x, ll y)
{
	if (x < y) return 0;
	return fac[x] * inv[y] % mod * inv[x - y] % mod;
}

int main()
{
	fac[0] = 1;
	for (int i = 1; i <= lim; i ++ ) fac[i] = fac[i - 1] * (ll)(i) % mod;
	inv[lim] = qpow(fac[lim], mod - 2);
	for (int i = lim - 1; i >= 0; i -- ) inv[i] = inv[i + 1] * (ll)(i + 1) % mod;
	t = read();
	while (t -- )
	{
		scanf("%s", ch + 1);
		n = strlen(ch + 1);
		int sum = 0;
		for (int i = 1; i <= n; i ++ ) sum += ch[i] - 'a' + 1;
		ll res = -1;
		for (int i = 0, o = 1; i <= n; i ++ , o *= -1)
			res = (res + 1ll * o * C(n, i) % mod * C(sum - 26 * i - 1, n - 1) % mod + mod) % mod;
		printf("%lld\n", res);
	}
	return 0;
}
posted @ 2021-03-25 12:58  andysj  阅读(70)  评论(0编辑  收藏  举报