【数论 快速幂 费马小定理】poj 3641 Pseudoprime numbers
Pseudoprime numbers
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 16389 | Accepted: 7082 |
Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
Sample Output
no no yes no yes yes
伪素数条件:1.p不是质数 2.a^p ≡ a (mod p)
代码
#include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> using namespace std; typedef long long ll; int is_prime(ll x) { for(int i=2;i*i<=x;i++) if(x%i==0) return false; return true; } ll qpow(ll a,ll b,ll mod) { ll res=1; while(b) { if(b&1) res=(res*a)%mod; b>>=1; a=(a*a)%mod; } return res; } int main() { freopen("a.in","r",stdin); freopen("a.out","w",stdout); ll p,a; while(scanf("%lld%lld",&p,&a) && (a || p)) { if(is_prime(p)) { printf("no\n"); continue; } if(qpow(a,p,p)==a%p) printf("yes\n"); else printf("no\n"); } return 0; }