【数论 分治】poj 1845 Sumdiv
Sumdiv
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 37483 | Accepted: 9161 |
Description
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
Input
The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
Output
The only line of the output will contain S modulo 9901.
Sample Input
2 3
Sample Output
15
Hint
2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
可以考虑分治来计算这个式子
代码
#include<iostream> #include<cstdio> #include<cstdlib> #include<algorithm> using namespace std; const int mod=9901; typedef long long ll; ll qpow(ll a, ll b) { ll res=1; if(!b) return 1; while(b) { if(b&1) res=(res*a)%mod; b>>=1; a=(a*a)%mod; } return res; } ll dfs(int base,int step) { if(step==0) return 1; if(step & 1) return dfs(base,step/2)*(qpow(base,(step+1)/2)+1)%mod; else return (dfs(base,step/2-1)*(1+qpow(base,step/2+1))%mod)+qpow(base,step/2)%mod; } int main() { freopen("a.in","r",stdin); freopen("a.out","w",stdout); int A,B; while(scanf("%d%d",&A,&B)!=EOF) { int cnt=0; ll res=1; for(int i=2;i*i<=A;i++) { cnt=0; while(A%i==0) { cnt++; A/=i; } res=res*dfs(i,cnt*B)%mod; } if(A>1) res=res*dfs(A,B)%mod; printf("%lld",(res+mod)%mod); } return 0; }