openjdk源码分析之AtomicLong
关键代码:
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset; // 底层value变量的偏移地址
private volatile long value; //底层变量
static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicLong.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
public final boolean compareAndSet(long expect, long update) {
return unsafe.compareAndSwapLong(this, valueOffset, expect, update);
}
然后看unsafe.cpp
中compareAndSwapLong的定义:
JNINativeMethod
{CC "compareAndSetLong", CC "(" OBJ "J""J""J"")Z", FN_PTR(Unsafe_CompareAndSetLong)}
UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSetLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) {
oop p = JNIHandles::resolve(obj);
if (p == NULL) {
volatile jlong* addr = (volatile jlong*)index_oop_from_field_offset_long(p, offset);
return RawAccess<>::atomic_cmpxchg(x, addr, e) == e;
} else {
assert_field_offset_sane(p, offset);
return HeapAccess<>::atomic_cmpxchg_at(x, p, (ptrdiff_t)offset, e) == e;
}
} UNSAFE_END
template <DecoratorSet decorators>
template <DecoratorSet ds, typename T>
inline typename EnableIf<
HasDecorator<ds, MO_SEQ_CST>::value, T>::type
RawAccessBarrier<decorators>::atomic_cmpxchg_internal(T new_value, void* addr, T compare_value) {
return Atomic::cmpxchg(new_value,
reinterpret_cast<volatile T*>(addr),
compare_value,
memory_order_conservative);
}
template<typename T, typename D, typename U>
inline D Atomic::cmpxchg(T exchange_value,
D volatile* dest,
U compare_value,
atomic_memory_order order) {
return CmpxchgImpl<T, D, U>()(exchange_value, dest, compare_value, order);
}
// Handle cmpxchg for integral and enum types.
//
// All the involved types must be identical.
template<typename T>
struct Atomic::CmpxchgImpl<
T, T, T,
typename EnableIf<IsIntegral<T>::value || IsRegisteredEnum<T>::value>::type>
{
T operator()(T exchange_value, T volatile* dest, T compare_value,
atomic_memory_order order) const {
// Forward to the platform handler for the size of T.
return PlatformCmpxchg<sizeof(T)>()(exchange_value,
dest,
compare_value,
order);
}
};
然后转到具体平台相关的实现类,比如mac下的src/hotspot/os_cpu/bsd_x86/atomic_bsd_x86.hpp
template<>
template<typename T>
inline T Atomic::PlatformCmpxchg<8>::operator()(T exchange_value,
T volatile* dest,
T compare_value,
atomic_memory_order /* order */) const {
STATIC_ASSERT(8 == sizeof(T));
__asm__ __volatile__ ( "lock cmpxchgq %1,(%3)"
: "=a" (exchange_value)
: "r" (exchange_value), "a" (compare_value), "r" (dest)
: "cc", "memory");
return exchange_value;
}
可见mac下采用的是cmpxchgq汇编指令实现:
__asm__
内联汇编
lock
锁消息总线保证互斥地使用这个内存地址
AT&T汇编格式: 指令 源操作数 目的操作数
cmpxchg : 用RAX中的值与目的操作数的值进行比较,如果相等,则设置ZF标志并把源操作数加载到目的操作数中,否则清除ZF标志并把目的操作数加载到RAX中。
分析:lock cmpxchgq %1,(%3)
其中%1指exchange_value
,%3指dest
。
首先把compare_value加载到RAX,然后比较RAX与目的操作数(%3即dest)的值,如果相等则把%1即exchange_value的值设置到dest,返回RAX中的值即compare_value。否则把%3即dest中的值加载的RAX寄存器,然后返回RAX中的值。即如果相等返回的是compare_value,否则返回的是dest原来的值。最后那返回的值与比较的值进行比较,相等则返回true表示设置成功。
return HeapAccess<>::atomic_cmpxchg_at(x, p, (ptrdiff_t)offset, e) == e;