8-3-3python语法基础-并发编程-协程-异步redis,异步MySQL,fastAPI,异步http
实战案例
为了更好理解,上述所有示例的IO情况都是以 asyncio.sleep 为例,而真实的项目开发中会用到很多IO的情况。
异步Redis
当通过python去操作redis时,链接、设置值、获取值 这些都涉及网络IO请求,使用asycio异步的方式可以在IO等待时去做一些其他任务,从而提升性能。
安装Python异步操作redis模块
pip3 install aioredis
示例1:异步操作redis。
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import asyncio
import aioredis
async def execute(address, password):
print("开始执行", address)
# 网络IO操作:创建redis连接
redis = await aioredis.create_redis(address, password=password)
# 网络IO操作:在redis中设置哈希值car,内部在设三个键值对,即: redis = { car:{key1:1,key2:2,key3:3}}
await redis.hmset_dict('car', key1=1, key2=2, key3=3)
# 网络IO操作:去redis中获取值
result = await redis.hgetall('car', encoding='utf-8')
print(result)
redis.close()
# 网络IO操作:关闭redis连接
await redis.wait_closed()
print("结束", address)
asyncio.run(execute('redis://47.93.4.198:6379', "root!2345"))
示例2:连接多个redis做操作(遇到IO会切换其他任务,提供了性能)。
import asyncio
import aioredis
async def execute(address, password):
print("开始执行", address)
# 网络IO操作:先去连接 47.93.4.197:6379,遇到IO则自动切换任务,去连接47.93.4.198:6379
redis = await aioredis.create_redis_pool(address, password=password)
# 网络IO操作:遇到IO会自动切换任务
await redis.hmset_dict('car', key1=1, key2=2, key3=3)
# 网络IO操作:遇到IO会自动切换任务
result = await redis.hgetall('car', encoding='utf-8')
print(result)
redis.close()
# 网络IO操作:遇到IO会自动切换任务
await redis.wait_closed()
print("结束", address)
task_list = [
execute('redis://47.93.4.197:6379', "root!2345"),
execute('redis://47.93.4.198:6379', "root!2345")
]
asyncio.run(asyncio.wait(task_list))
更多redis操作参考aioredis官网:https://aioredis.readthedocs.io/en/v1.3.0/start.html
异步MySQL
当通过python去操作MySQL时,连接、执行SQL、关闭都涉及网络IO请求,
使用asycio异步的方式可以在IO等待时去做一些其他任务,从而提升性能。
安装Python异步操作redis模块
pip3 install aiomysql
示例1:
import asyncio
import aiomysql
async def execute():
# 网络IO操作:连接MySQL
conn = await aiomysql.connect(host='127.0.0.1', port=3306, user='root', password='123', db='mysql', )
# 网络IO操作:创建CURSOR
cur = await conn.cursor()
# 网络IO操作:执行SQL
await cur.execute("SELECT Host,User FROM user")
# 网络IO操作:获取SQL结果
result = await cur.fetchall()
print(result)
# 网络IO操作:关闭链接
await cur.close()
conn.close()
asyncio.run(execute())
示例2:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import asyncio
import aiomysql
async def execute(host, password):
print("开始", host)
# 网络IO操作:先去连接 47.93.40.197,遇到IO则自动切换任务,去连接47.93.40.198:6379
conn = await aiomysql.connect(host=host, port=3306, user='root', password=password, db='mysql')
# 网络IO操作:遇到IO会自动切换任务
cur = await conn.cursor()
# 网络IO操作:遇到IO会自动切换任务
await cur.execute("SELECT Host,User FROM user")
# 网络IO操作:遇到IO会自动切换任务
result = await cur.fetchall()
print(result)
# 网络IO操作:遇到IO会自动切换任务
await cur.close()
conn.close()
print("结束", host)
task_list = [
execute('47.93.40.197', "root!2345"),
execute('47.93.40.197', "root!2345")
]
asyncio.run(asyncio.wait(task_list))
FastAPI框架
FastAPI是一款用于构建API的高性能web框架,框架基于Python3.6+的 type hints搭建。
接下里的异步示例以FastAPI和uvicorn来讲解(uvicorn是一个支持异步的asgi)。
安装FastAPI web 框架,
pip3 install fastapi
安装uvicorn,本质上为web提供socket server的支持的asgi(一般支持异步称asgi、不支持异步称wsgi)
pip3 install uvicorn
示例:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import asyncio
import uvicorn
import aioredis
from aioredis import Redis
from fastapi import FastAPI
app = FastAPI()
REDIS_POOL = aioredis.ConnectionsPool('redis://47.193.14.198:6379', password="root123", minsize=1, maxsize=10)
@app.get("/")
def index():
""" 普通操作接口 """
return {"message": "Hello World"}
@app.get("/red")
async def red():
""" 异步操作接口 """
print("请求来了")
await asyncio.sleep(3)
# 连接池获取一个连接
conn = await REDIS_POOL.acquire()
redis = Redis(conn)
# 设置值
await redis.hmset_dict('car', key1=1, key2=2, key3=3)
# 读取值
result = await redis.hgetall('car', encoding='utf-8')
print(result)
# 连接归还连接池
REDIS_POOL.release(conn)
return result
if __name__ == '__main__':
uvicorn.run("luffy:app", host="127.0.0.1", port=5000, log_level="info")
在有多个用户并发请求的情况下,异步方式来编写的接口可以在IO等待过程中去处理其他的请求,提供性能。
例如:同时有两个用户并发来向接口 http://127.0.0.1:5000/red 发送请求,服务端只有一个线程,同一时刻只有一个请求被处理。 异步处理可以提供并发是因为:当视图函数在处理第一个请求时,第二个请求此时是等待被处理的状态,当第一个请求遇到IO等待时,会自动切换去接收并处理第二个请求,当遇到IO时自动化切换至其他请求,一旦有请求IO执行完毕,则会再次回到指定请求向下继续执行其功能代码。
爬虫
在编写爬虫应用时,需要通过网络IO去请求目标数据,这种情况适合使用异步编程来提升性能,
接下来我们使用支持异步编程的aiohttp模块来实现。
安装aiohttp模块
pip3 install aiohttp
示例:
import aiohttp
import asyncio
async def fetch(session, url):
print("发送请求:", url)
async with session.get(url, verify_ssl=False) as response:
text = await response.text()
print("得到结果:", url, len(text))
async def main():
async with aiohttp.ClientSession() as session:
url_list = [
'https://python.org',
'https://www.baidu.com',
'https://www.pythonav.com'
]
tasks = [asyncio.create_task(fetch(session, url)) for url in url_list]
await asyncio.wait(tasks)
if __name__ == '__main__':
asyncio.run(main())
技术改变命运