mapreduce中使用python

1.创建文件目录

mkdir -p /opt/pyshell/mapreduce/

2.新建mapper脚本

vi /opt/pyshell/mapreduce/mapper.py

#!/usr/bin/env python
#coding=utf-8
import sys

for line in sys.stdin:
	line=line.strip()
	words=line.split()
	for word in words:
		print("{0}\t{1}".format(word,1))

3.新建reducer脚本

vi /opt/pyshell/mapreduce/reducer.py

#!/usr/bin/env python
#coding=utf-8

from operator import itemgetter
import sys

current_word = None
current_count = 0
word = None

for line in sys.stdin:
    line = line.strip(' ')
    word, count = line.split('\t', 1)
    try:
        count = int(count)
    except ValueError:  #count如果不是数字的话,直接忽略掉
        continue
    if current_word == word:
        current_count += count
    else:
        if current_word:
            print "%s\t%s" % (current_word, current_count)
        current_count = count
        current_word = word

if word == current_word:  #不要忘记最后的输出
    print "%s\t%s" % (current_word, current_count)

4.上传文件到hdsp

hadoop fs -put /opt/data/*.txt /input

5.启动yarn

service yarn start

参考 注册yarn为 chkconfig管理

6.执行脚本

cd /usr/apps/hadoop/hadoop-2.6.4/share/hadoop/tools/lib/

hadoop jar hadoop-streaming-2.6.4.jar \
-file /opt/pyshell/mapreduce/mapper.py     -mapper /opt/pyshell/mapreduce/mapper.py \
-file /opt/pyshell/mapreduce/reducer.py    -reducer /opt/pyshell/mapreduce/reducer.py \
-input /input/*    -output /output/out

7.登陆yarn查看执行进度

http://10.1.1.2:8088/

参考
https://www.cnblogs.com/kaituorensheng/p/3826114.html

posted @ 2020-09-07 11:21  尼姑哪里跑  阅读(411)  评论(0编辑  收藏  举报