Python:核岭回归预测,KRR

结合实用数据分析该书,整理了下代码,记录以作备忘和分享:

注:其中用到mlpy(机器学习库),安装会出现问题,可参考文末引用文章的处理方法。

  1 # -*- coding: utf-8 -*-
  2 """
  3 Created on Wed Oct 17 21:14:44 2018
  4 
  5 @author: Luove
  6 """
  7 # KRR适合分类和回归训练集很少时,非线性方法
  8 import os
  9 import numpy as np
 10 import matplotlib.pyplot as plt
 11 import dateutil.parser as dparser  # dateutil模块主要有两个函数,parser和rrule。parser是根据字符串解析成datetime,而rrule是则是根据定义的规则来生成datetime;https://blog.csdn.net/cherdw/article/details/55224341
 12 from pylab import *  # 将matplotlib和numpy封装在一起,模拟MATLAB编程环境
 13 from sklearn.cross_validation import train_test_split
 14 from sklearn import linear_model
 15 from sklearn import datasets
 16 import mlpy
 17 from mlpy import KernelRidge
 18 
 19 # np.hamming 汉明窗,构造一个函数(仅处理窗内数据)。这个函数在某一区间有非零值,而在其余区间皆为0.汉明窗就是这样的一种函数
 20 # 阶梯图,又叫瀑布图,可以用于企业成本、销售等数据的变化和构成情况的分析;plot.step()
 21 x1 = np.linspace(1,100,500)
 22 x2 = np.linspace(1,100,50)
 23 y1 = np.cos(x1)
 24 y2 = np.cos(x2)
 25 
 26 axs1 = plt.subplot(211)
 27 axs2 = plt.subplot(212)
 28 axs1.step(x1,y1)
 29 axs2.step(x2,y2)
 30 plt.show()
 31 
 32 
 33 goldfile = "D:\Analyze\Python Matlab\Python\BookCodes\PDA_Book-master\PDA_Book-master\Chapter7\Gold.csv"
 34 # tsa,时间序列分析,将时间序列平滑化,(本身包含:趋势T,季节性/周期性S,波动性V)
 35 def smooth(x,window_length):
 36     s = np.r_[2*x[0]-x[window_length-1::-1], x, 2*x[-1]-x[-1:-window_length:-1]]
 37     w = np.hamming(window_length)
 38     y = np.convolve(w/w.sum(), s, mode='same')  # 卷积函数,移动平均滤波(平滑方法),第一个参数长度要大于等于第二参数长度,否则会交换位置;mode={'full','same','valid'},默认full
 39     return y[window_length:-window_length+1]
 40 
 41 # 金价走势,注意下面dtype变化:日期用object,值用None(各列内容识别,)
 42 x = np.genfromtxt(goldfile,dtype='object',delimiter=',',skip_header=1,usecols=(0),converters={0:dparser.parse})  # 第一列日期,dateutil.parser.parse,字符串中解析出日期
 43 y = np.genfromtxt(goldfile,dtype=None,delimiter=',',skip_header=1,usecols=(1))  # 获取第二列
 44 y_smoothed = smooth(y,len(y))
 45 plt.step(x,y,'r*',label='raw data')
 46 plt.step(x,y_smoothed,label='smoothed data')
 47 plt.legend()
 48 #x = [2,3,9,634,32,4,676,4,234,43,7,-13,0]
 49 #x = np.array(x)
 50 #np.round(smooth(x,len(x)))
 51 #[ 33.,  80., 124., 165., 189., 199., 192., 169., 137., 104.,  66., 35.,  16.]
 52 #plt.plot(x)
 53 #plt.plot(np.round(smooth(x,len(x))))  # 加载pylab,不必plt.show()?
 54 ##plt.show()
 55 #window_length=x.shape[0]
 56 
 57 house = datasets.load_boston()
 58 houseX = house.data[:,np.newaxis]  # 添加一个新轴,添加一维度,由(506, 13)转成(506, 1,13)
 59 houseX_temp = houseX[:,:,2]
 60 
 61 x_train,xtest,ytrain,ytest=train_test_split(houseX_temp,house.target,test_size=1.0/3)
 62 lreg = linear_model.LinearRegression()
 63 lreg.fit(x_train,ytrain)
 64 plt.scatter(xtest,ytest,color='green')
 65 plt.plot(xtest,lreg.predict(xtest),color='blue',linewidth=2)
 66 
 67 np.random.seed(0)
 68 targetvalues = np.genfromtxt(goldfile,skip_header=1,dtype=None,delimiter=',',usecols=(1))  # usecols筛选感兴趣列
 69 type(targetvalues)
 70 trainingpoints = np.arange(125).reshape(-1,1)  # transform ,转换成一列,行自适应
 71 testpoint = np.arange(126).reshape(-1,1)
 72 knl = mlpy.kernel_gaussian(trainingpoints,trainingpoints,sigma=1)  # 训练核矩阵,对称半正定,(125, 125)
 73 knltest = mlpy.kernel_gaussian(testpoint,trainingpoints,sigma=1)  # 测试核矩阵,(126, 125)
 74 
 75 knlridge = KernelRidge(lmb=0.01)
 76 knlridge.learn(knl,targetvalues)
 77 resultpoints = knlridge.pred(knltest)
 78 
 79 fig = plt.figure(1)
 80 plt.plot(trainingpoints,targetvalues,'o') 
 81 plt.plot(testpoint,resultpoints)
 82 #plt.show()
 83 len(resultpoints)
 84 resultpoints[-5:-1]
 85 
 86 # 采用平滑后的数据,即smooth后的targetvalues
 87 targetvalues_smoothed = smooth(targetvalues,len(targetvalues))
 88 knlridge.learn(knl,targetvalues_smoothed)
 89 resultpoints_smoothed = knlridge.pred(knltest)
 90 plt.step(trainingpoints,targetvalues_smoothed,'o')
 91 plt.step(testpoint,resultpoints_smoothed)
 92 #plt.show()
 93 len(resultpoints_smoothed)
 94 resultpoints_smoothed[-5:-1]  # 平滑前126期预测值:1389.8;平滑后126期预测值1388.6
 95 #x = np.arange(0, 2, 0.05).reshape(-1, 1) # training points
 96 #y = np.ravel(np.exp(x)) + np.random.normal(1, 0.2, x.shape[0]) # target values
 97 #xt = np.arange(0, 2, 0.01).reshape(-1, 1) # testing points
 98 #K = mlpy.kernel_gaussian(x, x, sigma=1) # training kernel matrix
 99 #Kt = mlpy.kernel_gaussian(xt, x, sigma=1) # testing kernel matrix
100 #krr = KernelRidge(lmb=0.01)
101 #krr.learn(K, y)
102 #yt = krr.pred(Kt)
103 #fig = plt.figure(1)
104 #plot1 = plt.plot(x[:, 0], y, 'o')
105 #plot2 = plt.plot(xt[:, 0], yt)
106 #plt.show()

 

 其中,mlpy.KernelRidge模型参数lmb(正则化参数),设定越小,拟合趋势和原趋势基本一致,如下图:分别是lmb=0.01,lmb=1(默认)

而正则化参数意义文档中解释不清,详细可参考引用的文章,解释比较好,摘取部门截图如下:

 

 

 

 

 

 

Ref:

Windows下Python模块-----mlpy(机器学习库)的安装(本文未按此操作,有用的可以给咱交流下啊)

pip安装MLPY库 (安装推荐按此操作)

机器学习之正则化(Regularization)

《实用数据分析》:文中数据mlpy文档需要可自取:https://github.com/Luove/Data

posted @ 2018-10-18 21:25  Luove  阅读(4483)  评论(0编辑  收藏  举报