caffe-windows之彩色图像分类例程cifar10
一、caffe-windows之彩色图像分类例程cifar10
训练测试网络模型【参考1】【参考2】
1. 准备数据
-
下载二进制数据集数据集,下载链接为http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz,在linux或是w10系统下,也可以直接运行.sh文件下载数据。
-
解压压缩包,得到6个bin文件和一个batches.meta.txt文件,其中data_batch_1.bin到bata_batch_5.bin是训练数据集,由50000张32*32的彩图组成,test_batch.bin是测试数据集,由10000张32*32的彩图组成,batches.meta.txt为标签文件。
2. 数据格式转换
-
在examples/cifar10/下新建一个input_folder文件夹,将6个bin文件放入;
-
利用convert_cifar_data.exe可执行程序转换数据,可以转换成leveldb或mldb格式,直接存放在examples/cifar10/文件夹中。
//leveldb Build\x64\Release\convert_cifar_data.exe examples\cifar10\input_folder examples\cifar10 leveldb //lmdb Build\x64\Release\convert_cifar_data.exe examples\cifar10\input_folder examples\cifar10 lmdb
3. 计算数据均值文件
利用compute_image_mean.exe来得到数据集的均值文件,可以根据leveldb格式数据集或是lmdb格式数据集,命令如下:
//leveldb,因为默认数据时lmdb格式,所以要用leveldb格式,需要用-backend字段指明。
Build\x64\Release\compute_image_mean.exe -backend=leveldb examples\cifar10\cifar10_train_leveldb examples\cifar10\mean.binaryproto
//lmdb
Build\x64\Release\compute_image_mean.exe examples\cifar10\cifar10_train_lmdbdb examples\cifar10\mean.binaryproto
4. 训练模型
-
确定网络模型描述文件为examples/cifar10/cifar10_quick_train_test.prototxt,超参数配置文件为cifar10_quick_solver.prototxt.
-
如果是lmdb格式数据,只要修改cifar10_quick_solver.prototxt中的solver_mode改为CPU就好;
如果是leveldb格式的话,cifar10_quick_train_test.prototxt中的数据source需要修改,同时backend需要改成LEVELDB。
-
执行训练命令
Build\x64\Release\caffe.exe train -solver examples\cifar10\cifar10_quick_solver.prototxt
【执行结果】:accruacy有0.7083,loss有0.867989,保存的快照文件为cifar10_quick_iter_4000.caffemodel.h5,cifar10_quick_iter_4000.solverstate.h5
5. 测试网络模型
-
准备一张待识别的彩色图像,缩放到32*32.
-
确定识别网络模型描述文件为examples\cifar10\cifar10_quick.prototxt,模型权值文件为examples\cifar10\cifar10_quick_iter_4000.caffemodel.h5,数据集均值文件为examples\cifar10\mean.binaryproto,数据集标签文件为examples\cifar10\batches.meta.txt
-
利用classification.exe调用网络识别图像
Build\x64\Release\classification.exe examples\cifar10\cifar10_quick.prototxt examples\cifar10\cifar10_quick_iter_4000.caffemodel.h5 examples\cifar10\mean.binaryproto examples\cifar10\batches.meta.txt examples\cifar10\dog.jpg
-
识别结果0.7744的概率为狗。
二、利用上述网络训练自己的24类字母数据集实现字母识别
之前用mnist的网络去分类,发现效果不好,这次用cifar网络试一下。
数据集包括24个类别的字母(A-Z),每类字母有90张左右的样本。抽取每类样本中的70张,共1680张样本组成训练数据集,剩余466张的样本组成测试数据集。
训练网络的过程与上述过程类似:
-
准备数据,得到训练标签文件char-trainData.txt和测试标签文件char-testData.txt,文件中的每一行为“样本图像路径+' '+标签” ;
-
数据集格式转换为lmdb格式,因为cifar10数据集是32*32的彩图,因此这里也将数据集转换成32*32大小的。
//train-data Build\x64\Release\convert_imageset.exe --resize_height=32 --resize_width=32 examples\my_project\char\ examples\my_project\char\char-trainData.txt examples\my_project/char/char_trainData_db //test-data Build\x64\Release\convert_imageset.exe --resize_height=32 --resize_width=32 examples\my_project\char\ examples\my_project\char\char-testData.txt examples\my_project/char/char_testData_db
-
得到数据集均值文件
Build\x64\Release\compute_image_mean.exe examples\my_project\char\char_trainData_db examples\my_project\char\mean.binaryproto
-
修改网络描述文件和超参数配置文件
cifar10_quick_solver.prototxt里只要修改网络路径net、测试迭代次数test_iter、快照保存路径snapshot_prefix。
cifar10_quick_train_test.prototxt里要修改的有:均值文件路径mean_file、训练或测试数据路径source、单批训练或测试的数量batch_size、最终网络输出的类别数num_output。
-
训练网络
训练结果如下,最终可以得到0.975的识别准确率,如第一张图所示,但在迭代训练3500次的时候,网络识别准确率更好,达到了0.981818,如图第二张图所示。
Build\x64\Release\caffe.exe train -solver examples\my_project\char\cifar10_quick_solver.prototxt