Event Recommendation Engine Challenge分步解析第一步
一、简介
此项目来自kaggle:https://www.kaggle.com/c/event-recommendation-engine-challenge/
数据集的下载需要账号,并且需要手机验证(之前如果kaggle账号已经验证过,就不需要验证了),验证的时候手机号前面需要加上860:
这里我已经将数据下载,并上传到百度云盘,链接:https://pan.baidu.com/s/1KDZN313XkbhkRDZX4dLYNA 提取码:ino3
背景介绍
根据user actions, event metadata, and demographic information(社交信息)预测用户对哪个event感兴趣
桌面新建文件夹:推荐比赛->进入推荐比赛文件夹->shift + 右键->在此处新建命令窗口->jupyter notebook->新建recommend脚本,将上面下载的数据解压到推荐比赛文件夹
1)第一步:统计user和event相关信息
我们先看看train.csv:
import pandas as pd df_train = pd.read_csv('train.csv') df_train.head()
结果如下:前两列是用户ID和对应的event ID
而test.csv中用户缺少了标签:
让我们来看看第一步的完整代码:
from collections import defaultdict import scipy.sparse as ss import scipy.io as sio import itertools #import cPickle #From python3, cPickle has beed replaced by _pickle import _pickle as cPickle class ProgramEntities: """ 我们只关心train和test中出现的user和event,因此重点处理这部分关联数据, 经过统计:train和test中总共3391个users和13418个events """ def __init__(self): #统计训练集中有多少独立的用户的events uniqueUsers = set()#uniqueUsers保存总共多少个用户:3391个 uniqueEvents = set()#uniqueEvents保存总共多少个events:13418个 eventsForUser = defaultdict(set)#字典eventsForUser保存了每个user:所对应的event usersForEvent = defaultdict(set)#字典usersForEvent保存了每个event:哪些user点击 for filename in ['train.csv', 'test.csv']: f = open(filename) f.readline()#跳过第一行 for line in f: cols = line.strip().split(',') uniqueUsers.add( cols[0] ) uniqueEvents.add( cols[1] ) eventsForUser[cols[0]].add( cols[1] ) usersForEvent[cols[1]].add( cols[0] ) f.close() self.userEventScores = ss.dok_matrix( ( len(uniqueUsers), len(uniqueEvents) ) ) self.userIndex = dict() self.eventIndex = dict() for i, u in enumerate(uniqueUsers): self.userIndex[u] = i for i, e in enumerate(uniqueEvents): self.eventIndex[e] = i ftrain = open('train.csv') ftrain.readline() for line in ftrain: cols = line.strip().split(',') i = self.userIndex[ cols[0] ] j = self.eventIndex[ cols[1] ] self.userEventScores[i, j] = int( cols[4] ) - int( cols[5] ) ftrain.close() sio.mmwrite('PE_userEventScores', self.userEventScores) #为了防止不必要的计算,我们找出来所有关联的用户或者关联的event #所谓关联用户指的是至少在同一个event上有行为的用户user pair #关联的event指的是至少同一个user有行为的event pair self.uniqueUserPairs = set() self.uniqueEventPairs = set() for event in uniqueEvents: users = usersForEvent[event] if len(users) > 2: self.uniqueUserPairs.update( itertools.combinations(users, 2) ) for user in uniqueUsers: events = eventsForUser[user] if len(events) > 2: self.uniqueEventPairs.update( itertools.combinations(events, 2) ) #rint(self.userIndex) cPickle.dump( self.userIndex, open('PE_userIndex.pkl', 'wb')) cPickle.dump( self.eventIndex, open('PE_eventIndex.pkl', 'wb') ) print('第1步:统计user和event相关信息...') pe = ProgramEntities() print('第1步完成...\n')
其中PE_userEventScores.mtx是所有users和events的矩阵,但是里面的值只有train.csv的值,值是1或者-1
scipy.sparse.dok_matrix()函数是产生一个稀疏矩阵,这样PE_userEventScores.mtx只保存了非0值
针对该步使用的变量作简单介绍:
uniqueUsers:集合,保存train.csv和test.csv中的所有user ID
uniqueEvents:集合,保存train.csv和test.csv中的所有event ID
eventsForUser:字典,key为每个用户,value为该用户对应的event集合
usersForEvent:字典,key为每个event,value为该event对应的user集合
userIndex:字典,每个用户有个Index
eventIndex:字典,每个event有个Index
userEventScores:稀疏矩阵3391 * 13418,use vs event,矩阵元素为train.csv中每个user对某个event的兴趣分(1, 0 or -1)即interested - not_interested
import pandas as pd pd.DataFrame(userEventScores)
代码示例结果:
userEventScores:每个user对每个event的兴趣分(1, 0 or -1)
uniqueUserPairs:集合,如果对于同一个event来说,关联上3个及3个以上users,则该event关联上的users进行两两配对,保存在uniqueUserPairs中,注意保存的是userId,而不是user对应的索引:
import pandas as pd df_train = pd.read_csv('train.csv') df_train[df_train['event']==1502284248] import itertools for each in itertools.combinations(set([3044012,1302145719,3194014105,3669515588]), 2): print(each)
代码结果示例:
uniqueEventPairs:集合,对于同一个用户,如果其关联的events大于等于3,则这些关联的events保存在uniqueEventPairs中,注意保存的是event id,而不是event对应的索引:
import pandas as pd df_train = pd.read_csv('train.csv') df_train[df_train['user']==3044012] import itertools for each in itertools.combinations(set([1918771225,1502284248,2529072432, 3072478280, 1390707377, 1532377761 ]), 2): print(each)
代码结果示例:
cPickle模块(python3为pickle或者_pickle模块):请参考pickle详解
至此,第一步完成,哪里有不明白的请留言