Debug --> Variable,Tensor,Numpy的转换
尝试输出keras模型参数的时候,需要解决的问题:
1 import tensorflow.compat.v1 as tf 2 tf.disable_v2_behavior() 3 import numpy as np 4 weight = tf.get_variable(name='weights',initializer=tf.random_normal([5,2], stddev=0.01)) 5 with tf.Session() as sess: 6 sess.run(tf.global_variables_initializer()) 7 print('------------------打印出已经初始化之后的Variable的值------------------------------') 8 print(sess.run(weight)) 9 print('----------weight的类型------------') 10 print(type(weight)) 11 # Variable转换为Tensor 12 # Variable类型转换为tensor类型(无论是numpy转换为Tensor还是Variable转换为Tensor都可以使用tf.convert_to_tensor) 13 data_tensor = tf.convert_to_tensor(weight) 14 # 打印出Tensor的值(由Variable转化而来) 15 print('------------------Variable转化为Tensor,打印出Tensor的值--------------------------') 16 print(sess.run(data_tensor)) 17 # tensor转化为numpy 18 print('-------------------tensor转换为numpy,打印出numpy的值-----------------') 19 data_numpy = data_tensor.eval() 20 print(data_numpy) 21 print('------------------numpy转换为Tensor---------------------------') 22 ten = tf.convert_to_tensor(data_numpy) 23 print(ten) 24 print(sess.run(ten)) 25 # tensor转化为Variable(其实是Variable继承Tensor的结构,但是没有值 26 print('---------------------tensor转换为Variable(需要重新进行初始化)----------------------') 27 v = tf.Variable(data_tensor) # 此时Variable继承的是Tensor的结构,至于Variable的值,需要重新进行initialize 28 sess.run(tf.global_variables_initializer()) 29 print(sess.run(weight)) # 此时输出的weight和v的结构是相同的,但是值是不同的。 30 print(sess.run(v)) 31 32 # tf.enable_eager_execution( 33 # config=None, 34 # device_policy=None, 35 # execution_mode=None 36 # ) 37 # Variable转换为numpy(也是使用eval) 38 print('---------------Variable转换为numpy(也是使用eval)--------------------') 39 data_numpy2 = weight.eval() 40 print(data_numpy2)
1.模型保存
model.save_model()
可以保存网络结构权重以及优化器的参数model.save_weights()
仅仅保存权重
2.模型加载
from keras.models import load_model
load_model():
只能load 由save_model保存的,将模型和weight全load进来
model.load_weights(self, filepath, by_name=False):
在加载权重之前,model必须编译好
3.sequential 和functional
序列式模型只能有单输入单输出,函数式模型可以有多个输入输出
4.model类
因为是继承, model对象有 container和layer的所有方法,可以用model对象访问下面三个类的所有方法
Model(Container) | container | layer |
---|---|---|
fit | summary | get_input_at(node_index) |
evaluate | get_layer | get_config() |
predict | get_weights | compute_mask(x, mask) |
train on batch | set_weights | get_input_mask_at(node_index) |
test_on_batch | get_config | get_output_at(node_index) |
predict_on_batch | compute_output_shape | |
evaluate_generator | ||
predict_generator |
5.打印各层权重
layer.get_weights返回的是没有名字的权重array,Model.get_weights() 是他们的拼接,也没有名字,利用layer.weights 可以访问到后台的变量
1 #打印各层名字,权重的形状 2 for layer in model.layers: 3 for weight in layer.weights: 4 print weight.name,weight.shape
上面输出的weight是Var类型,下面给出另一种方法,输出的weight是np.Array类型:
1 names = [weight.name for layer in model.layers for weight in layer.weights] 2 weights = model.get_weights() 3 for name, weight in zip(names, weights): 4 print(name, weight.shape)
To see I can not see,
to know I do not know.