PyTorch-->神经网络

神经网络通过torch.nn包来重建。

神经网络基于自动梯度(autograd)来定义一些模型。一个nn.Module包括层和一个方法forward(input),会返回输出(output)。

一个典型的神经网络训练过程包括以下几个:

1.定义一个包含可训练参数的神经网络

2.迭代整个输入

3.通过神经网络处理输入

4.计算损失(损失)

5.反向传播梯度到神经网络的参数

6.更新网络的参数,典型的用一个简单的更新方法:权重 权重 学习率 *梯度

 

定义神经网络:

 1 class Net(nn.Module):
 2 
 3     def __init__(self):
 4         super(Net, self).__init__()
 5         # 1 input image channel, 6 output channels, 5*5 square conwolution
 6         # kernel
 7         self.conv1 = nn.Conv2d(1, 6, 5)  # 定义一个输入深度为1,输出为6,卷积核大小为 5*5 的 conv1 变量
 8         self.conv2 = nn.Conv2d(6, 16, 5)  # 输入通道数为6 输出通道数为16
 9         # an affine operation: y = Wx + b
10         self.fc1 = nn.Linear(16 * 5 * 5, 120)
11         self.fc2 = nn.Linear(120, 84)
12         self.fc3 = nn.Linear(84, 10)  # 最终属于10类中的一个
13 
14     def forward(self, x):
15         # 定义forward()函数:可以在此函数中使用任何Tensor操作
16         # backward()函数被autograd自动定义
17         # Max pooling over a (2,2) window
18         # 输入x -> conv1 -> relu -> 2*2窗口的最大池化
19         x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
20         # If the size is a square you can only specify a single number
21         x = F.max_pool2d(F.relu(self.conv2(x)), 2)
22         # view 函数将张量x变形成一维向量形式,总特征数不变,为全连接层做准备
23         x = x.view(-1, self.num_flat_features(x))
24         x = F.relu(self.fc1(x))
25         x = F.relu(self.fc2(x))
26         x = self.fc3(x)
27         return x
28 
29     def num_flat_features(self, x):
30         size = x.size()[1:]  # all dimensions except the batch dimension
31         num_features = 1
32         for s in size:
33             num_features *= s
34         return num_features

 

 输出如下:

 

 

 

注意:torch.nn 仅支持小批量样本输入,而不支持单个样本。例如,nn.Conv2d 接受一个 4D 张量 (nSamples nChannels Height Width)。如果仅有一个样本输入,只需使用input.unsqueeze(0) 添加伪造的批次尺寸。

  • 已经学到的:
  • torch.Tensor - A multi-dimensional array with support for autograd operations like backward(). Also holds the gradient w.r.t. the tensor. 张量对象,支持autograd各种操作,记录梯度。
  • nn.Module - Neural network module. Convenient way of encapsulating parameters, with helpers for moving them to GPU, exporting, loading, etc. 方便封装参数,可移植。
  • nn.Parameter - A kind of Tensor, that is automatically registered as a parameter when assigned as an attribute to a Module. 一种张量,作为Module的属性时,自动登记参数。
  • autograd.Function - Implements forward and backward definitions of an autograd operation. Every Tensor operation creates at least a single Function node that connects to functions that created a Tensor and encodes its history. 实现autograd 的 forward 和 backward函数。

 

损失函数:

以(output, target) 作为输入,计算一个值来评估output距离target有多远。例如:nn.MSELoss用于计算均方误差。

 1 if __name__ == '__main__':
 2     net = Net()
 3     print(net)
 4     # 模型中可学习的参数通过net.parameters()返回
 5     params = list(net.parameters())
 6     print(len(params))
 7     print(params[0].size())  # conv1's.weight
 8     input = torch.randn(1, 1, 32, 32)  # try a random 32*32 input
 9     # It means expected input size of this net is 32*32.In order to use this net on MNIST dataset,resize the images
10     #     from the dataset to 32*32.
11     out = net(input)
12     print(out)
13 
14     # # Zero the gradient buffers of all parameters and backprops with random gradients:利用随机梯度反向传播
15     # net.zero_grad()
16     # out.backward(torch.randn(1, 10))
17 
18     target = torch.randn(10)  # a dummy target
19     target = target.view(1, -1)  # the same shape as output
20     criterion = nn.MSELoss()
21 
22     loss = criterion(out, target)
23     print(loss)
24 
25     print(loss.grad_fn)  # MSELoss
26     print(loss.grad_fn.next_functions[0][0])  # Linear
27     print(loss.grad_fn.next_functions[0][0].next_functions[0][0])  # ReLu
28     # input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
29     #       -> view -> linear -> relu -> linear -> relu -> linear
30     #       -> MSELoss
31     #       -> loss
32 
33     # 使用损失函数进行反向传播
34     # 只需要使用loss.backward(),但注意要清空现存的梯度,否则梯度会进行累加。
35     # 调用loss.backward(), 查看con1的偏置项在反向传播之前和之后的变化
36     net.zero_grad()
37     print('before backward')
38     print(net.conv1.bias.grad)  # 更新后由全0向量变为None
39     loss.backward()
40     print('after backward')
41     print(net.conv1.bias.grad)
42 
43     # 更新神经网络参数(weight) rule:随机梯度下降
44     learning_rate = 0.01
45     for f in net.parameters():
46         f.data.sub_(f.grad.data * learning_rate)  # weight = weight - learning_rate * gradient
47 
48     # more update rule:torch.optim  例如:SGD,Nesterov-SGD,Adam,RMSProp...
49     import torch.optim as optim
50 
51     # create optimizer
52     optimizer = optim.SGD(net.parameters(), lr=0.01)
53 
54     # in training loop:
55     optimizer.zero_grad()  # zero the gradient buffers
56     output = net(input)
57     loss = criterion(output, target)
58     loss.backward()
59     optimizer.step()  # update

 

posted @ 2020-10-24 10:42  阿洛萌萌哒  阅读(124)  评论(0编辑  收藏  举报