JVM 基础:回收哪些内存/对象 引用计数算法 可达性分析算法 finalize()方法 HotSpot实现分析
转自:https://blog.csdn.net/tjiyu/article/details/53982412
1-1、为什么需要了解垃圾回收
目前内存的动态分配与内存回收技术已经相当成熟,但为什么还需要去了解内存分配与GC呢?
1、当需要排查各种内存溢出、内存泄漏问题时;
2、当垃圾收集成为系统达到更高并发量的瓶颈时;
我们就需要对这些"自动化"技术实话必要的监控和调节;
1-2、垃圾回收需要了解什么
思考GC完成的3件事:
1、哪些内存需要回收?即如何判断对象已经死亡;
2、什么时候回收?即GC发生在什么时候?需要了解GC策略,与垃圾回收器实现有关;
3、如何回收?即需要了解垃圾回收算法,及算法的实现--垃圾回收器;
第一点就是本文下面的主题,这是垃圾回收的基础,如:可达性分析算法是后面垃圾回收算法的基础,而判断哪些对象可以回收是垃圾回收的首要任务。
2、判断对象可以回收
垃圾收集器对堆进行回收前,首先要确定堆中的对象哪些还"存活",哪些已经"死去";
下面先来了解两种判断对象不再被引用的算法,再来谈谈对象的引用,最后来看如何真正宣告一个对象死亡。
2-1、引用计数算法(Recference Counting)
1、算法基本思路
给对象添加一个引用计数器,每当有一个地方引用它,计数器加1;
当引用失效,计数器值减1;
任何时刻计数器值为0,则认为对象是不再被使用的;
2、优点
实现简单,判定高效,可以很好解决大部分场景的问题,也有一些著名的应用案例;
3、缺点
(A)、很难解决对象之间相互循环引用的问题
如:
ReferenceCountingGC objA = new ReferenceCountingGC(); ReferenceCountingGC objB = new ReferenceCountingGC(); objA.instance = objB; objB.instance = objA; objA = null; objB = null;
当两个对象不再被访问时,因为相互引用对方,导致引用计数不为0;
更复杂的循环数据结构,如图(《编译原理》7-18):
B)、并且开销较大,频繁且大量的引用变化,带来大量的额外运算;
主流的JVM都没有选用引用计数算法来管理内存;
2-2、可达性分析算法(Reachability Analysis)
也称为传递跟踪算法;
主流的调用程序语言(Java、C#等)在主流的实现中,都是通过可达性分析来判定对象是否存活的。
1、算法基本思路
通过一系列"GC Roots"对象作为起始点,开始向下搜索;
搜索所走过和路径称为引用链(Reference Chain);
当一个对象到GC Roots没有任何引用链相连时(从GC Roots到这个对象不可达),则证明该对象是不可用的;
2、GC Roots对象
Java中,GC Roots对象包括:
(1)、虚拟机栈(栈帧中本地变量表)中引用的对象;
(2)、方法区中类静态属性引用的对象;
(3)、方法区中常量引用的对象;
(4)、本地方法栈中JNI(Native方法)引用的对象;
主要在执行上下文中和全局性的引用;
3、优点
更加精确和严谨,可以分析出循环数据结构相互引用的情况;
4、缺点
实现比较复杂;
需要分析大量数据,消耗大量时间;
分析过程需要GC停顿(引用关系不能发生变化),即停顿所有Java执行线程(称为"Stop The World",是垃圾回收重点关注的问题);
后面会针对HotSpot虚拟机实现的可达性分析算法进行介绍,看看是它如何解决这些缺点的。
2-3、再谈对象引用
在《Java对象在Java虚拟机中的引用访问方式》曾详细介绍过对象的引用问题,这与对象回收算法有很大关系,下面再来了解下。
java程序通过reference类型数据操作堆上的具体对象;
1、JVM层面的引用
reference类型是引用类型(Reference Types)的一种;
JVM规范规定reference类型来表示对某个对象的引用,可以想象成类似于一个指向对象的指针;
对象的操作、传递和检查都通过引用它的reference类型的数据进行操作;
2、Java语言层面的引用
(i)、JDK1.2前的引用定义
如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着一个引用;
这种定义太过狭隘,无法描述更多信息;
(ii)、JDK1.2后,对引用概念进行了扩充,将引用分为:
(1)、强引用(Strong Reference)
程序代码普遍存在的,类似"Object obj=new Object()";
只要强引用还存在,GC永远不会回收被引用的对象;
(2)、软引用(Soft Reference)
用来描述还有用但并非必需的对象;
直到内存空间不够时(抛出OutOfMemoryError之前),才会被垃圾回收;
最常用于实现对内存敏感的缓存;
SoftReference类实现;
(3)、弱引用(Weak Reference)
用来描述非必需对象;
只能生存到下一次垃圾回收之前,无论内存是否足够;
WeakReference类实现;
(4)、虚引用(Phantom Reference)
也称为幽灵引用或幻影引用;
完全不会对其生存时间构成影响;
唯一目的就是能在这个对象被回收时收到一个系统通知;
PhantomRenference类实现;
更多请参考JDK相关API说明;
对于软引用,可以使用命令行选项"-XX:SoftRefLRUPolicyMSPerMB = <N>"来控制清除速率;
更多请参考:http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/considerations.html#sthref65
2-4、判断对象生存还是死亡
要真正宣告一个对象死亡,至少要经历两次标记过程。
1、第一次标记
在可达性分析后发现到GC Roots没有任何引用链相连时,被第一次标记;
并且进行一次筛选:此对象是否必要执行finalize()方法;
(A)、没有必要执行
没有必要执行的情况:
(1)、对象没有覆盖finalize()方法;
(2)、finalize()方法已经被JVM调用过;
这两种情况就可以认为对象已死,可以回收;
(B)、有必要执行
对有必要执行finalize()方法的对象,被放入F-Queue队列中;
稍后在JVM自动建立、低优先级的Finalizer线程(可能多个线程)中触发这个方法;
2、第二次标记
GC将对F-Queue队列中的对象进行第二次小规模标记;
finalize()方法是对象逃脱死亡的最后一次机会:(A)、如果对象在其finalize()方法中重新与引用链上任何一个对象建立关联,第二次标记时会将其移出"即将回收"的集合;
(B)、如果对象没有,也可以认为对象已死,可以回收了;
一个对象的finalize()方法只会被系统自动调用一次,经过finalize()方法逃脱死亡的对象,第二次不会再调用;
2-5、finalize()方法
上面已经说到finalize()方法与垃圾回收第二次标记相关,下面了解下在Java语言层面有哪些需要注意的。
finalize()是Object类的一个方法,是Java刚诞生时为了使C/C++程序员容易接受它所做出的一个妥协,但不要当作类似C/C++的析构函数;
因为它执行的时间不确定,甚至是否被执行也不确定(Java程序的不正常退出),而且运行代价高昂,无法保证各个对象的调用顺序(甚至有不同线程中调用);
如果需要"释放资源",可以定义显式的终止方法,并在"try-catch-finally"的finally{}块中保证及时调用,如File相关类的close()方法;
此外,finalize()方法主要有两种用途:
1、充当"安全网"
当显式的终止方法没有调用时,在finalize()方法中发现后发出警告;
但要考虑是否值得付出这样的代价;
如FileInputStream、FileOutputStream、Timer和Connection类中都有这种应用;
2、与对象的本地对等体有关
本地对等体:普通对象调用本地方法(JNI)委托的本地对象;
本地对等体不会被GC回收;
如果本地对等体不拥有关键资源,finalize()方法里可以回收它(如C/C++中malloc(),需要调用free());
如果有关键资源,必须显式的终止方法;
一般情况下,应尽量避免使用它,甚至可以忘掉它。
更多请参考:
《How to Handle Java Finalization's Memory-Retention Issues》:http://www.devx.com/Java/Article/30192
《Effective Java》第二版 第2章 第7条:避免使用终结方法;
《Thinking in Java》第四版 5.5 清理:终结处理和垃圾回收;
《Java语言规范》12.6 类实例的终结;