Java邻接表表示加权有向图,附dijkstra最短路径算法
从A到B,有多条路线,要找出最短路线,应该用哪种数据结构来存储这些数据。
这不是显然的考查图论的相关知识了么,
1.图的两种表示方式:
邻接矩阵:二维数组搞定。
邻接表:Map<Vertext,List<Edge>>搞定。
其中邻接矩阵适用于稠密图,即图上的任意两点之间均(差不多都)存在一条边。
而A到B之间的路线,显然是稀疏图,果断的选用邻接表。
2.加权有向图最短路径问题,典型的dijkstra最短路径算法。
说干就干,翻翻《数据结构与算法》,自己用Java大概实现了一下,具体代码如下:
实现思路:
1,定义一个类:有向图类:Graph。
有向图类的子类:节点类:Vertex,边类:Vertex。
节点类:保存节点名称,上一个节点,长度等属性。
边节点:保存每条边的两边的节点,通过边找到对应的另一条节点。
2,该类有两个属性:
1,List<Vertex> vertexList:保存图的顶点集合,便于遍历顶点的时候查找对应集合。
2,Map<Vertex, List<Edge>> ver_edgeList_map:图的每个顶点对应的有向边。
3,为了能够记录最短路径,需要为每个节点定义一个属性:父节点,表示父节点到该点的距离最短。
3,每个节点有多个属性:
String name; //节点名字
boolean known; //此节点之前是否已知,如果未知的话,则需要初始化距离adjuDist和parent属性
int adjuDist; //保存从开始节点到此节点距离
Vertex parent; //当前从初始节点到此节点的最短路径下,的父节点。
4,从起点节点开始查找。
比较规则:从A节点开始比较,对其指向的B节点进行初始化和比较:
如果B节点未被初始化,先设置该B节点的父节点为A节点,距离为边长加上A节点的adjuDist。
如果已经初始化完了,则重新比较:
如果A节点加边长小于B节点的adjuDist,则证明A节点到B节点的距离最短,设置A节点为B节点父节点,并且长度修改为A节点的adjuDist加上边长。
否则不做操作。
5,等所有的节点初始化完了,从终止节点开始,通过终止节点的父节点找到上一个节点,输出节点的路径。
代码如下:
package 笔试题; import java.util.LinkedList; import java.util.List; import java.util.Map; public class Graph{ private List<Vertex> vertexList; //图的顶点集 private Map<Vertex, List<Edge>> ver_edgeList_map; //图的每个顶点对应的有向边 public Graph(List<Vertex> vertexList, Map<Vertex, List<Edge>> ver_edgeList_map) { super(); this.vertexList = vertexList; this.ver_edgeList_map = ver_edgeList_map; } public List<Vertex> getVertexList() { return vertexList; } public void setVertexList(List<Vertex> vertexList) { this.vertexList = vertexList; } public Map<Vertex, List<Edge>> getVer_edgeList_map() { return ver_edgeList_map; } public void setVer_edgeList_map(Map<Vertex, List<Edge>> ver_edgeList_map) { this.ver_edgeList_map = ver_edgeList_map; } static class Edge{ private Vertex startVertex; //此有向边的起始点 private Vertex endVertex; //此有向边的终点 private int weight; //此有向边的权值 public Edge(Vertex startVertex, Vertex endVertex, int weight) { super(); this.startVertex = startVertex; this.endVertex = endVertex; this.weight = weight; } public Edge() {} public Vertex getStartVertex() { return startVertex; } public void setStartVertex(Vertex startVertex) { this.startVertex = startVertex; } public Vertex getEndVertex() { return endVertex; } public void setEndVertex(Vertex endVertex) { this.endVertex = endVertex; } public int getWeight() { return weight; } public void setWeight(int weight) { this.weight = weight; } } static class Vertex { private final static int infinite_dis = Integer.MAX_VALUE; private String name; //节点名字 private boolean known; //此节点之前是否已知 private int adjuDist; //此节点距离 private Vertex parent; //当前从初始节点到此节点的最短路径下,的父节点。 public Vertex() { this.known = false; this.adjuDist = infinite_dis; this.parent = null; } public Vertex(String name) { this.known = false; this.adjuDist = infinite_dis; this.parent = null; this.name = name; } public String getName() { return name; } public void setName(String name) { this.name = name; } public boolean isKnown() { return known; } public void setKnown(boolean known) { this.known = known; } public int getAdjuDist() { return adjuDist; } public void setAdjuDist(int adjuDist) { this.adjuDist = adjuDist; } public Vertex getParent() { return parent; } public void setParent(Vertex parent) { this.parent = parent; } /** * 重新Object父类的equals方法 */ @Override public boolean equals(Object obj) { if (!(obj instanceof Vertex)) { throw new ClassCastException("an object to compare with a Vertext must be Vertex"); } if (this.name==null) { throw new NullPointerException("name of Vertex to be compared cannot be null"); } return this.name.equals(obj); } } public void setRoot(Vertex v) { v.setParent(null); v.setAdjuDist(0); } /** * * @param startIndex dijkstra遍历的起点节点下标 * @param destIndex dijkstra遍历的终点节点下标 */ public void dijkstraTravasal(int startIndex,int destIndex) { Vertex start = vertexList.get(startIndex); Vertex dest = vertexList.get(destIndex); String path = "["+dest.getName()+"]"; setRoot(start); updateChildren(vertexList.get(startIndex)); int shortest_length = dest.getAdjuDist(); while((dest.getParent()!=null)&&(!dest.equals(start))) { path = "["+dest.getParent().getName()+"] --> "+path; dest = dest.getParent(); } System.out.println("["+vertexList.get(startIndex).getName() +"] to ["+ vertexList.get(destIndex).getName()+"] dijkstra shortest path :: "+path); System.out.println("shortest length::"+shortest_length); } /** * 从初始节点开始递归更新邻接表 * @param v */ private void updateChildren(Vertex v) { if (v==null) { return; } if (ver_edgeList_map.get(v)==null||ver_edgeList_map.get(v).size()==0) { return; } //用来保存每个可达的节点 List<Vertex> childrenList = new LinkedList<Graph.Vertex>(); for(Edge e:ver_edgeList_map.get(v)) { Vertex childVertex = e.getEndVertex(); //如果子节点之前未知,则进行初始化, //把当前边的开始点默认为子节点的父节点,长度默认为边长加边的起始节点的长度,并修改该点为已经添加过,表示不用初始化 if(!childVertex.isKnown()) { childVertex.setKnown(true); childVertex.setAdjuDist(v.getAdjuDist()+e.getWeight()); childVertex.setParent(v); childrenList.add(childVertex); } //此时该子节点的父节点和之前到该节点的最小长度已经知道了,则比较该边起始节点到该点的距离是否小于子节点的长度, //只有小于的情况下,才更新该点为该子节点父节点,并且更新长度。 int nowDist = v.getAdjuDist()+e.getWeight(); if(nowDist>=childVertex.getAdjuDist()) { continue; } else { childVertex.setAdjuDist(nowDist); childVertex.setParent(v); } } //更新每一个子节点 for(Vertex vc:childrenList) { updateChildren(vc); } } }
测试代码:
package 笔试题; import java.util.HashMap; import java.util.LinkedList; import java.util.List; import java.util.Map; import 笔试题.Graph.Edge; import 笔试题.Graph.Vertex; /** * 测试用main方法 * @author wuhui.wwh * */ public class TestGraph { public static void main(String[] args) { Vertex v1= new Vertex("v1"); Vertex v2= new Vertex("v2"); Vertex v3= new Vertex("v3"); Vertex v4= new Vertex("v4"); Vertex v5= new Vertex("v5"); Vertex v6= new Vertex("v6"); Vertex v7= new Vertex("v7"); Vertex v8= new Vertex("v8"); List<Vertex> verList = new LinkedList<Graph.Vertex>(); verList.add(v1); verList.add(v2); verList.add(v3); verList.add(v4); verList.add(v5); verList.add(v6); verList.add(v7); verList.add(v8); Map<Vertex, List<Edge>> vertex_edgeList_map = new HashMap<Graph.Vertex, List<Edge>>(); List<Edge> v1List = new LinkedList<Graph.Edge>(); v1List.add(new Edge(v1,v2,6)); v1List.add(new Edge(v1,v4,1)); v1List.add(new Edge(v1,v4,1)); List<Edge> v2List = new LinkedList<Graph.Edge>(); v2List.add(new Edge(v2,v3,43)); v2List.add(new Edge(v2,v4,11)); v2List.add(new Edge(v2,v5,6)); List<Edge> v3List = new LinkedList<Graph.Edge>(); v3List.add(new Edge(v3,v8,8)); List<Edge> v4List = new LinkedList<Graph.Edge>(); v4List.add(new Edge(v4,v3,15)); v4List.add(new Edge(v4,v5,12)); List<Edge> v5List = new LinkedList<Graph.Edge>(); v5List.add(new Edge(v5,v3,38)); v5List.add(new Edge(v5,v8,13)); v5List.add(new Edge(v5,v7,24)); List<Edge> v6List = new LinkedList<Graph.Edge>(); v6List.add(new Edge(v6,v5,1)); v6List.add(new Edge(v6,v7,12)); List<Edge> v7List = new LinkedList<Graph.Edge>(); v7List.add(new Edge(v7,v8,20)); vertex_edgeList_map.put(v1, v1List); vertex_edgeList_map.put(v2, v2List); vertex_edgeList_map.put(v3, v3List); vertex_edgeList_map.put(v4, v4List); vertex_edgeList_map.put(v5, v5List); vertex_edgeList_map.put(v6, v6List); vertex_edgeList_map.put(v7, v7List); Graph g = new Graph(verList, vertex_edgeList_map); g.dijkstraTravasal(0, 7); } }
运行结果:
[v1] to [v8] dijkstra shortest path :: [v1] --> [v2] --> [v5] --> [v8]
shortest length::25