【NOIP2015提高组】Day2 T2 子串

题目描述

有两个仅包含小写英文字母的字符串 A 和 B。现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一 个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出 的位置不同也认为是不同的方案。

输入输出格式

第一行是三个正整数 n,m,k,分别表示字符串 A 的长度,字符串 B 的长度,以及问

题描述中所提到的 k,每两个整数之间用一个空格隔开。 第二行包含一个长度为 n 的字符串,表示字符串 A。 第三行包含一个长度为 m 的字符串,表示字符串 B。

 

输出文件名为 substring.out。 输出共一行,包含一个整数,表示所求方案数。由于答案可能很大,所以这里要求[b]输出答案对 1,000,000,007 取模的结果。[/b]

 

输入输出样例

输入样例#1:
6 3 1 
aabaab 
aab
输出样例#1:
2
输入样例#2:
6 3 2 
aabaab 
aab
输出样例#2:
7
输入样例#3:
6 3 3 
aabaab 
aab
输出样例#3:
7

说明

所有 10 组数据:1≤n≤1000,1≤m≤200,1≤k≤m。

 

题解:DP

令f[i][j][k]表示将A的前i个字母中取出k段,拼出B的前j个字母的方案数

不难推出f[i][j][k]=f[i-1][j][k]+Σf[i-x][j-x][k-1]  其中A[i-x+1...i]=B[j-x+1...j]。

可以看出这是时间复杂度为O(n*k*m^2),空间复杂度为O(n*m*k)的算法,极限数据下,会TLE+MLE。

所以怎么优化呢?

首先,考虑到f[i][j][k]只需要取到k-1和k,则采用滚动数据,将空间降低到O(n*m)。

其次,不难发现该方程中最主要的耗时在求Σf[i-x][j-x][k-1] ,则对于f[i][j],维护个斜线的前缀和(即Σf[i-x][j-x][k]的前缀和,本蒟蒻开了另一个数据s用于存储前缀数据),并且预处理出一个数据p[i][j],表示A[1..i]与B[1..j]的最长公共后缀长度,将时间复杂度降低至O(n*m*k)

初始为f[0][0][0]=1 答案为f[n][m]。

PS:自测考场上被卡常一个点,后来减少了一行取模命令后0.88s碾过....(没事少膜,会被+ns的)

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #define N 1010
 5 #define M 210
 6 #define MOD 1000000007
 7 #define L long long
 8 using namespace std;
 9 
10 char a[N]={0},b[M]={0};
11 L f[N][M]={0},s[N][M]={0},g[M][M]={0};
12 int p[N][M]={0},n,m,K;
13 
14 int get(int x,int y){
15     int i=0;
16     while(a[x]==b[y]&&x&&y) 
17     i++,x--,y--;
18     return i;
19 }
20 
21 int main(){
22     freopen("substring.in","r",stdin);
23     freopen("substring.out","w",stdout);
24     scanf("%d%d%d",&n,&m,&K);
25     scanf("%s",a+1); scanf("%s",b+1);
26     for(int i=1;i<=n;i++){
27         s[i][0]=1;
28         for(int j=1;j<=m;j++)
29         p[i][j]=get(i,j);    
30     }
31     s[0][0]=1;
32     for(int i=1;i<=n;i++){
33             for(int j=1;j<=m;j++)
34             s[i][j]=(s[i-1][j-1]+f[i][j])%MOD;
35         }
36     for(int k=1;k<=K;k++){
37         //memset(f,0,sizeof(f));
38         for(int i=1;i<=n;i++){
39             for(int j=1;j<=m;j++){
40                 f[i][j]=f[i-1][j];
41                 int x=p[i][j]+1;
42                 L ss=s[i-1][j-1];
43                 if(i-x>=0&&j-x>=0) 
44                 f[i][j]=(f[i-1][j]+ss-s[i-x][j-x]+MOD)%MOD;
45                 //ss=(ss-s[i-x][j-x]+MOD)%MOD;省了这行代码快了0.15s
46                 else f[i][j]=(f[i-1][j]+ss)%MOD;
47             }
48         }
49         memset(s,0,sizeof(s));
50         for(int i=1;i<=n;i++){
51             for(int j=1;j<=m;j++)
52             s[i][j]=(s[i-1][j-1]+f[i][j])%MOD;
53         }
54     }
55     cout<<f[n][m]<<endl;
56 }

 

posted @ 2017-10-21 23:32  AlphaInf  阅读(305)  评论(0编辑  收藏  举报