【NOIP2015提高组】 Day1 T2 信息传递

题目描述

有n个同学(编号为1到n)正在玩一个信息传递的游戏。在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学。

游戏开始时,每人都只知道自己的生日。之后每一轮中,所有人会同时将自己当前所知的生日信息告诉各自的信息传递对象(注意:可能有人可以从若干人那里获取信息,但是每人只会把信息告诉一个人,即自己的信息传递对象)。当有人从别人口中得知自己的生日时,游戏结束。请问该游戏一共可以进行几轮?

输入输出格式

输入格式:

 

输入共2行。

第1行包含1个正整数n表示n个人。

第2行包含n个用空格隔开的正整数T1,T2,……,Tn其中第i个整数Ti示编号为i

的同学的信息传递对象是编号为Ti的同学,Ti≤n且Ti≠i

数据保证游戏一定会结束。

 

输出格式:

 

输出共 1 行,包含 1 个整数,表示游戏一共可以进行多少轮。

 

输入输出样例

输入样例#1:
5
2 4 2 3 1
输出样例#1:
3

说明

样例1解释

游戏的流程如图所示。当进行完第 3 轮游戏后, 4 号玩家会听到 2 号玩家告诉他自

己的生日,所以答案为 3。当然,第 3 轮游戏后, 2 号玩家、 3 号玩家都能从自己的消息

来源得知自己的生日,同样符合游戏结束的条件。

对于 30%的数据, n ≤ 200;

对于 60%的数据, n ≤ 2500;

对于 100%的数据, n ≤ 200000。

 

题解:

不难看出,题目要求的是该图中包含点数最少但点数≥2的环所包含的点数。

直接对于每个点进行dfs求最小的环即可

但这种做法是O(n^2)的,考虑到n≤500,000,故需进行优化

考虑到题目中所求环为最小,那么当搜索到一个点在上一轮已经被遍历过时,其必找到另一个环,则不用向该点继续搜索。故每个点有且只有被遍历一次,时间复杂度为O(n)

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<stack>
 5 #define M 210000
 6 #define INF 123123123
 7 using namespace std;
 8 int nx[M]={0},n,vis[M]={0},t=0;
 9 bool b[M]={0};
10 stack<int> s;
11 int bfs(int x){
12     vis[x]=++t;
13     if(nx[x]==x) return INF;
14     b[x]=1; s.push(x);
15     while(!vis[nx[x]]){
16         x=nx[x];
17         vis[x]=++t;
18         b[x]=1; s.push(x);
19     }
20     if(b[nx[x]]){
21         while(!s.empty()) b[s.top()]=0,s.pop();
22         return vis[x]-vis[nx[x]]+1;
23     }else{
24         while(!s.empty()) b[s.top()]=0,s.pop();
25         return INF;
26     }
27 }
28 
29 int main(){
30     freopen("message.in","r",stdin);
31     freopen("message.out","w",stdout);
32     scanf("%d",&n); int minn=INF;
33     for(int i=1;i<=n;i++) scanf("%d",nx+i);
34     for(int i=1;i<=n;i++) if(!vis[i]) 
35     minn=min(minn,bfs(i));
36     cout<<minn<<endl;
37 }

 

posted @ 2017-10-21 20:04  AlphaInf  阅读(276)  评论(0编辑  收藏  举报