【xsy2272】 与运算 状压dp

题目大意:给你一个长度为$n$的序列$a$,我们定义$f_i$表示序列$a$前i项一次进行按位与运算后的值。

我们认为一个序列的价值为$\sum_{i=1}^{n}f_i$,现在你要重新排列序列$a$,使得序列的价值最大。

数据范围,$1≤a_i,n≤10^6$

 

我们考虑$dp$。

不难发现,若序列中存在数$x$和数$y$,满足$x\&y==x$,那么将$y$放在$x$前面显然是会更优的。

设$cnt[i]$表示序列$a$中,有多少个数$k$,满足$i\&k==i$(此处&表示按位与)

我们$f[i]$表示以i结尾的序列的最大值是多少,那么显然答案为$\max\limits_{0≤i<2^{20}}f[i]$

不难发现有$f[i]=\max\limits_{i\&k==i} f[k]+(cnt[k]-cnt[i])$。

如果说直接转移的话复杂度显然是$O(n^{\log_2^3})$的,这么搞只能过$70%$的数据。

所以要稍微考虑下转移的性质,我们只需要转移满足$k=i+2^j$的$k$即可。

这样时间复杂度就可以优化到$O(n\log\ n)$了。

 

 1 #include<bits/stdc++.h>
 2 #define N 20
 3 #define M (1<<N)
 4 using namespace std;
 5 int cnt[M]={0}; long long f[M]={0},ans=0;
 6 int main(){
 7     for(int n,x=scanf("%d",&n);n;n--) scanf("%d",&x),cnt[x]++;
 8     for(int j=0;j<N;j++)
 9     for(int i=M-(1<<(j+1));i>=0;i--)
10     if((i&(1<<j))==0)
11     cnt[i]+=cnt[i+(1<<j)];
12     for(int i=M-1;~i;i--){
13         for(int j=0;j<N;j++)
14         if((i&(1<<j))==0){
15             f[i]=max(f[i],f[i+(1<<j)]+1LL*i*(cnt[i]-cnt[i+(1<<j)]));
16             ans=max(ans,f[i]);
17         }
18     }
19     cout<<ans<<endl;
20 }

 

posted @ 2019-03-23 09:14  AlphaInf  阅读(118)  评论(0编辑  收藏  举报