HDU 4471 矩阵快速幂 Homework
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=4471
解题思路,矩阵快速幂····特殊点特殊处理·····
令h为计算某个数最多须知前h个数,于是写出方程:
D =
c1 | c2 | ``` | c[h-1] | c[h] |
1 | 0 | ``` | 0 | 0 |
0 | 1 | ``` | 0 | 0 |
0 | 0 | 0 | 0 | |
0 | 0 | 1 | 0 |
V[x] =
f[x] |
f[x-1] |
` |
` |
f[x-h+1] |
显然有V[x+1] = D*V[x].D是由系数行向量,一个(h-1)*(h-1)的单位矩阵,和一个(h-1)*1的0矩阵组成。V[x]是一个h行,1列的矩阵。
初始条件为V[m] = (f[m],f[m-1],`````).如果m>h,那么多余的部分不会用到,如果m<h剩下的部分用0取代,相当于人为的添加前项f[0] = 0,f[-1] = 0·····这不会影响结果,而且式子仍然成立。由此计算出V[n],答案就为V[1][1].
其余看一下代码就OK了,还有别人的解题报告,也可以看一下:
链接:
http://www.07net01.com/program/547544.html
我的代码:
1 #include<cstdio> 2 #include<algorithm> 3 using namespace std; 4 const int N =102; 5 const int mod = 1000000007; 6 int h;//计算f[x]时最多和前面h个数有关 7 struct matrix 8 { 9 int row,col; 10 int m[N][N]; 11 void init(int row,int col) 12 { 13 this->row = row; 14 this->col = col; 15 for(int i=0; i<=row; ++i) 16 for(int j=0; j<=col; ++j) 17 m[i][j] = 0; 18 } 19 } A,pm[33],ans; 20 21 matrix operator*(const matrix & a,const matrix& b) 22 { 23 matrix res; 24 res.init(a.row,b.col); 25 for(int k=1; k<=a.col; ++k) 26 { 27 for(int i=1; i<= res.row; ++i) 28 { 29 if(a.m[i][k] == 0 ) continue; 30 for(int j = 1; j<=res.col; ++j) 31 { 32 if(b.m[k][j] == 0 ) continue; 33 res.m[i][j] = (1LL *a.m[i][k]*b.m[k][j] + res.m[i][j])%mod; 34 } 35 } 36 } 37 return res; 38 } 39 40 void cal(int x) 41 { 42 for(int i=0; i<=31; ++i) 43 if(x & (1<<i) ) ans = pm[i]*ans; 44 } 45 void getPm() 46 { 47 pm[0] = A; 48 for(int i=1; i<=31; ++i) 49 pm[i] = pm[i-1]*pm[i-1]; 50 } 51 struct sp//特殊点 52 { 53 int nk,tk;//nk为点的位置,tk为计算nk时和前面tk个数有关 54 int ck[N]; 55 bool operator<(const sp & o)const//按照nk排序 56 { 57 return nk<o.nk; 58 } 59 } p[N]; 60 int main() 61 { 62 // freopen("in.txt","r",stdin); 63 int n,m,q,t,f[N],c[N],kase=0; 64 while(~scanf("%d%d%d",&n,&m,&q)) 65 { 66 for(int i=m; i>0; --i) scanf("%d",&f[i]); 67 scanf("%d",&t); 68 h =t; 69 for(int i=1; i<=t; ++i) scanf("%d",&c[i]); 70 for(int i=0; i<q; ++i) 71 { 72 scanf("%d%d",&p[i].nk,&p[i].tk); 73 if(p[i].tk > h) h = p[i].tk; 74 for(int j=1; j<=p[i].tk; ++j) scanf("%d",&p[i].ck[j]); 75 } 76 sort(p,p+q); 77 A.init(h,h); 78 for(int i=1; i<=t; ++i) A.m[1][i] = c[i]; 79 for(int i=2; i<=h; ++i) A.m[i][i-1] = 1; 80 getPm(); 81 ans.init(h,1); 82 for(int i = m; i > 0; --i) ans.m[i][1] = f[i]; 83 int last=m; 84 for(int i=0; i<q; ++i) 85 { 86 if( p[i].nk <=last || p[i].nk >n ) continue; 87 cal( p[i].nk-last-1); 88 last = p[i].nk; 89 for(int j=1; j<=p[i].tk; ++j) A.m[1][j] = p[i].ck[j]; 90 for(int j=p[i].tk+1; j<=h; ++j) A.m[1][j] = 0; 91 ans =A*ans; 92 } 93 cal(n-last); 94 printf("Case %d: %d\n",++kase,ans.m[1][1]); 95 } 96 return 0; 97 }