HDU 4471 矩阵快速幂 Homework

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=4471

解题思路,矩阵快速幂····特殊点特殊处理·····

令h为计算某个数最多须知前h个数,于是写出方程:

D =

c1 c2 ``` c[h-1] c[h]
1 0 ``` 0 0
0 1 ``` 0 0
0 0   0 0
0 0   1 0

V[x] =

f[x]
f[x-1]
`
`
f[x-h+1]

显然有V[x+1] = D*V[x].D是由系数行向量,一个(h-1)*(h-1)的单位矩阵,和一个(h-1)*1的0矩阵组成。V[x]是一个h行,1列的矩阵。

初始条件为V[m] = (f[m],f[m-1],`````).如果m>h,那么多余的部分不会用到,如果m<h剩下的部分用0取代,相当于人为的添加前项f[0] = 0,f[-1] = 0·····这不会影响结果,而且式子仍然成立。由此计算出V[n],答案就为V[1][1].

其余看一下代码就OK了,还有别人的解题报告,也可以看一下:

链接:

http://www.07net01.com/program/547544.html

我的代码:

 1 #include<cstdio>
 2 #include<algorithm>
 3 using namespace std;
 4 const int N =102;
 5 const int mod = 1000000007;
 6 int h;//计算f[x]时最多和前面h个数有关
 7 struct matrix
 8 {
 9     int row,col;
10     int m[N][N];
11     void init(int row,int col)
12     {
13         this->row = row;
14         this->col = col;
15         for(int i=0; i<=row; ++i)
16             for(int j=0; j<=col; ++j)
17                 m[i][j] = 0;
18     }
19 } A,pm[33],ans;
20 
21 matrix operator*(const matrix & a,const matrix& b)
22 {
23     matrix res;
24     res.init(a.row,b.col);
25     for(int k=1; k<=a.col; ++k)
26     {
27         for(int i=1; i<= res.row; ++i)
28         {
29             if(a.m[i][k] == 0 ) continue;
30             for(int j = 1; j<=res.col; ++j)
31             {
32                 if(b.m[k][j] == 0 ) continue;
33                 res.m[i][j] = (1LL *a.m[i][k]*b.m[k][j] + res.m[i][j])%mod;
34             }
35         }
36     }
37     return res;
38 }
39 
40 void cal(int x)
41 {
42     for(int i=0; i<=31; ++i)
43         if(x & (1<<i) ) ans = pm[i]*ans;
44 }
45 void getPm()
46 {
47     pm[0] = A;
48     for(int i=1; i<=31; ++i)
49         pm[i] = pm[i-1]*pm[i-1];
50 }
51 struct sp//特殊点
52 {
53     int nk,tk;//nk为点的位置,tk为计算nk时和前面tk个数有关
54     int ck[N];
55     bool operator<(const sp & o)const//按照nk排序
56     {
57         return nk<o.nk;
58     }
59 } p[N];
60 int main()
61 {
62 //    freopen("in.txt","r",stdin);
63     int n,m,q,t,f[N],c[N],kase=0;
64     while(~scanf("%d%d%d",&n,&m,&q))
65     {
66         for(int i=m; i>0; --i)   scanf("%d",&f[i]);
67         scanf("%d",&t);
68         h =t;
69         for(int i=1; i<=t; ++i)  scanf("%d",&c[i]);
70         for(int i=0; i<q; ++i)
71         {
72             scanf("%d%d",&p[i].nk,&p[i].tk);
73             if(p[i].tk > h) h = p[i].tk;
74             for(int j=1; j<=p[i].tk; ++j) scanf("%d",&p[i].ck[j]);
75         }
76         sort(p,p+q);
77         A.init(h,h);
78         for(int i=1; i<=t; ++i) A.m[1][i] = c[i];
79         for(int i=2; i<=h; ++i)  A.m[i][i-1] = 1;
80         getPm();
81         ans.init(h,1);
82         for(int i = m; i > 0; --i)   ans.m[i][1] = f[i];
83         int last=m;
84         for(int i=0; i<q; ++i)
85         {
86             if( p[i].nk <=last ||  p[i].nk >n ) continue;
87             cal( p[i].nk-last-1);
88             last =  p[i].nk;
89             for(int j=1; j<=p[i].tk; ++j)  A.m[1][j] = p[i].ck[j];
90             for(int j=p[i].tk+1; j<=h; ++j) A.m[1][j] = 0;
91             ans  =A*ans;
92         }
93         cal(n-last);
94         printf("Case %d: %d\n",++kase,ans.m[1][1]);
95     }
96     return 0;
97 }
View Code

 

posted on 2013-09-02 12:40  allh123  阅读(343)  评论(0编辑  收藏  举报

导航