POJ 1273 Drainage Ditches 一般增广路算法,网络流

看到Ci最大可以到10 000 000,N<=200,M<=200,我以为用这个算法会超时,据说该算法的复杂度是N*M*C,C为最大流量值。

但是显然没超,可能是数据弱神马的,不知道

没什么思路说的,就是裸的网络最大流,我的代码和上一个题 pigs(麦克卖猪)的代码基本上相同,下面贴代码:

View Code
 1 #include <cstdio>
 2 #include <cstring>
 3 #define MAXN 205
 4 #define MAXM 205
 5 #define INF 300000000
 6 struct Arc
 7 {
 8     int c,f;
 9 } edge[MAXN][MAXN];
10 int n,m;
11 void init()
12 {
13     int i;
14     memset(edge,0,sizeof(edge));
15     for(i =0; i < m; ++i)
16     {
17         int u,v,c;
18         scanf("%d%d%d",&u,&v,&c);
19         edge[u][v].c += c;
20     }
21 }
22 void Ford()
23 {
24     int prev[MAXN];
25     int alpha[MAXN];
26     int queue[MAXN];
27     int i,j;
28     while(1)
29     {
30         int front=0,tail=0;
31         memset(prev,0xff,sizeof(prev));
32         queue[tail++] = 1;
33         alpha[1] = INF;
34         prev[1] = -2;
35         while(front != tail && prev[n] == -1)
36         {
37             int v = queue[front++];
38             for(i = 1; i <= n; i++)
39             {
40                 int tmp;
41                 if(prev[i] == -1 && (tmp = edge[v][i].c-edge[v][i].f))
42                 {
43                     prev[i] = v;
44                     queue[tail++] = i;
45                     alpha[i] = alpha[v] < tmp ? alpha[v]:tmp;
46                 }
47             }
48         }
49         if(prev[n] == -1) break;
50         for(i = prev[n],j = n; i != -2; j = i, i = prev[i])
51         {
52             edge[i][j].f += alpha[n];
53             edge[j][i].f = -edge[i][j].f;
54         }
55     }
56     int p=0;
57     for(i=1; i<n; i++)
58         p += edge[i][n].f;
59     printf("%d\n",p);
60 }
61 int main()
62 {
63 //    freopen("in.cpp","r",stdin);
64     while(~scanf("%d%d",&m,&n))
65     {
66         init();
67         Ford();
68     }
69     return 0;
70 }

 

posted on 2013-04-08 20:25  allh123  阅读(179)  评论(0编辑  收藏  举报

导航