【原】 POJ 2593 Max Sequence 动态规划 解题报告

 

http://poj.org/problem?id=2593

 

Maximum Sequence
求数组两段不重叠的连续子数组的最大和
详见2479

 

Description

Give you N integers a1, a2 ... aN (|ai| <=1000, 1 <= i <= N).

clip_image001

You should output S.

Input

The input will consist of several test cases. For each test case, one integer N (2 <= N <= 100000) is given in the first line. Second line contains N integers. The input is terminated by a single line with N = 0.

Output

For each test of the input, print a line containing S.

Sample Input

5

-5 9 -5 11 20

0

Sample Output

40

 

   1: #include <stdio.h>
   2: #include <iostream>
   3:  
   4: using namespace std ;
   5:  
   6:  
   7: const int N = 100000 ;
   8:  
   9: int a[N] ;
  10: int maxsofar[2][N] ;
  11:  
  12: void run2593()
  13: {
  14:     int n,val ;
  15:     int i,j ;
  16:     int maxendinghere ;
  17:     int max ;
  18:     int sum ;
  19:  
  20:     while(  scanf( "%d", &n ) && n!=0 )
  21:     {
  22:         scanf( "%d", &a[0] ) ;
  23:         maxendinghere = a[0] ;
  24:         maxsofar[0][0] = a[0] ;
  25:         for( i=1 ; i<n ; ++i )
  26:         {
  27:             scanf( "%d", &a[i] ) ;
  28:             maxendinghere = std::max( a[i] , maxendinghere+a[i] ) ;
  29:             maxsofar[0][i] = std::max( maxsofar[0][i-1] , maxendinghere ) ;
  30:         }
  31:  
  32:         maxendinghere = a[n-1] ;
  33:         maxsofar[1][n-1] = a[n-1] ;
  34:         max = maxsofar[0][n-2] + a[n-1] ;
  35:         for( i=n-2 ; i>0 ; --i )
  36:         {
  37:             maxendinghere = std::max( a[i] , a[i]+maxendinghere ) ;
  38:             maxsofar[1][i] = std::max( maxsofar[1][i+1] , maxendinghere ) ;
  39:             sum = maxsofar[0][i-1] + maxsofar[1][i] ;
  40:             max = max>sum ? max : sum ;
  41:         }
  42:         printf( "%d\n" , max ) ;
  43:     }
  44: }
posted @ 2010-11-08 19:20  Allen Sun  阅读(265)  评论(0编辑  收藏  举报