摘要: Louvain算法主要针对文献[1]的一种实现,它是一种基于模块度的图算法模型,与普通的基于模块度和模块度增益不同的是,该算法速度很快,而且对一些点多边少的图,进行聚类效果特别明显,本文用的画图工具是Gephi,从画图的效果来说,提升是很明显的。 阅读全文
posted @ 2015-01-01 23:38 AllanSpark 阅读(34563) 评论(9) 推荐(1) 编辑
摘要: k-means【3】算法,也被称为k-平均或k-均值,是一种得到最广泛使用的聚类算法。它是一种得到最广泛使用的基于划分的聚类算法,把n个对象分为k个簇,以使簇内具有较高的相似度。相似度的计算根据一个簇中对象的平均值来进行。算法的主要思想是通过迭代过程把数据集划分为不同的类别,使得评价聚类性能的准则函数达到最优,从而使生成的每个聚类内紧凑,类间独立。它与处理混合正态分布【1】的最大期望算法【2】很相似,因为他们都试图找到数据中自然聚类的中心。 阅读全文
posted @ 2015-01-01 12:43 AllanSpark 阅读(304) 评论(0) 推荐(0) 编辑