2021牛客暑期多校训练营9 部分题题解
C.Cells
题目链接
简要题解
这个题首先需要用到LGV引理,引理的具体内容此处不加讨论。
我们根据LGV引理得到,所要求的答案就是下面那个行列式:
朴素的行列式求值是利用高斯消元,但是显然在这里不适用,于是我们要进行更多的推导。
进行一步转置操作,答案不变。
我们拆掉组合数,把分母的阶乘提出来,得到
我们对这个行列式进行初等行变换,那么我们可以得到
具体怎么进行初等行变换呢,拿三行一列来举个例子:
右边那个是范德蒙行列式,它的值$$D_n=\prod_{1\leq j<i\leq n}((a_i+1)-(a_j+1))$$
这个东西可以构造多项式求解,我们令\(f(x)=\sum_{i=1}^{n}x^{a_i}\),\(g(x)=\sum_{i=1}^nx^{-a_i}\)
用\(NTT\)对\(f(x)\)和\(g(x)\)做卷积,那么\(x\)的指数就是\(a_i-a_j\),系数就是满足\(a_i-a_j\)等于指数的\((i,j)\)对数。
设\(h(x)=f(x)*g(x)=\sum_{i=1}^{\infty}H_i*x^i\),那么\(D_n=\prod_{i=1}^{\infty}i^{H_i}\)
我们对\(D_n\)取模时,讲道理\(H_i\)要对\(998244352\)取模,但是观察发现\(H_i\)不可能超过模数,所以可以直接\(NTT\)
时间复杂度\(O(n*logn)\)
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int MAXN=5e5+10;
const int Mod=998244353;
int n,m,Ans,Seq[MAXN],Fac[MAXN],Inv[MAXN];
int Read()
{ int a=0,c=1; char b=getchar();
while(b!='-'&&(b<'0'||b>'9')) b=getchar();
if(b=='-') c=-1,b=getchar();
while(b>='0'&&b<='9') a=a*10+b-48,b=getchar();
return a*c;
}
int Pow(int Base,int P)
{ int Ret=1,Cnt=Base;
for(;P>=1;P>>=1) P&1?Ret=1ll*Ret*Cnt%Mod:0,Cnt=1ll*Cnt*Cnt%Mod;
return Ret;
}
int Add(int A,int B){ return A+=B,A>=Mod?A-Mod:A; }
namespace Poly
{ int Len,Ms,Inv,Rader[1<<21],A[1<<21],B[1<<21];
void NTT(int *P,int K)
{ for(int i=0;i<Len;i++)
if(i<Rader[i]) swap(P[i],P[Rader[i]]);
for(int i=1;i<Len;i<<=1)
{ int Euler=Pow(3,(Mod-1)/(i<<1));
if(K<0) Euler=Pow(Euler,Mod-2);
for(int Pos=(i<<1),j=0;j<Len;j+=Pos)
{ int Wi=1;
for(int k=0;k<i;k++,Wi=1ll*Wi*Euler%Mod)
{ int X=P[j+k],Y=1ll*Wi*P[i+j+k]%Mod;
P[j+k]=Add(X,Y),P[i+j+k]=Add(X,Mod-Y);
}
}
}
if(K>0) return ;
Inv=Pow(Len,Mod-2);
for(int i=0;i<Len;i++) P[i]=1ll*P[i]*Inv%Mod;
}
void Prepare(int Lx)
{ Ms=-1;
for(Len=1;Len<=Lx;Len<<=1) Ms++;
for(int i=0;i<Len;i++) Rader[i]=(Rader[i>>1]>>1)|((i&1)<<Ms);
}
void Work()
{ for(int i=1;i<=n;i++) A[Seq[i]]++,B[1000001-Seq[i]]++;
Prepare(2e6),NTT(A,1),NTT(B,1);
for(int i=0;i<Len;i++) A[i]=1ll*A[i]*B[i]%Mod;
NTT(A,-1);
}
}using Poly::Work;using Poly::A;
int main()
{ n=Read(),Fac[0]=Ans=1;
for(int i=1;i<=n;i++) Seq[i]=Read(),Fac[i]=1ll*Fac[i-1]*i%Mod;
Inv[n]=Pow(Fac[n],Mod-2);
for(int i=n-1;i>=0;i--) Inv[i]=1ll*Inv[i+1]*(i+1)%Mod;
for(int i=1;i<=n;i++) Ans=1ll*Ans*(Seq[i]+1)%Mod*Inv[i]%Mod;
Work();
for(int i=1000002;i<=2000001;i++) Ans=1ll*Ans*Pow(i-1000001,A[i])%Mod;
printf("%d\n",Ans);
}
I.Incentive Model
题目链接
简要题解
题目的大意是,\(A\)和\(B\)两个人依次争夺\(n\)块区域,两人分别有个初始能力值\(a\)和\(b\)。
对于每一块区域的争夺,\(A\)获胜的概率为\(\frac{a}{a+b}\),\(B\)获胜的概率为\(\frac{b}{a+b}\),获胜的一方将会增加\(w\)点能力值。
求最终\(A\)获胜的期望次数。
考场上大部分人没读懂题,这个可以直接做。
我们设\(E(x)\)表示,已经争夺了\(x\)块区域,\(A\)的期望能力值,那么不难写出转移方程:
于是我们得到
由于总能力值等于初始能力值加上后面获胜取得的能力值,我们令\(x=n\),就能发现$$Ans=a*n$$
直接输出即可。
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int Mod=998244353;
int n,W,X,Y;
int Pow(int B,int P)
{ int Ret=1,Cnt=B;
while(P>=1) P&1?Ret=1ll*Ret*Cnt%Mod:0,Cnt=1ll*Cnt*Cnt%Mod,P>>=1;
return Ret;
}
int main()
{ scanf("%d%d%d%d",&n,&W,&X,&Y);
printf("%lld\n",1ll*X*Pow(Y,Mod-2)%Mod*n%Mod);
}
J.Jam
题目链接
简要题解
由于道路不是很多,我们可以手动把情况全部枚举出来。
可以发现,对于右转的车辆,不会与任何车道的车冲突,于是右转的灯可以一直亮着。
剩下了\(12\)条车道,我们经过手玩可以发现,每一秒钟,最多同时亮两个绿灯,我们还可以求出能够在同一秒亮绿灯的所有车道对。
既然要时间最短,我们肯定希望同时亮两个绿灯的次数最多,这就变成了一个求最大匹配的问题。
解决方法比较多,这里介绍一种网络流建图跑最大流的做法。
既然要求匹配,我们就把每个车道拆成两个点,放在左右两排,还有源点\(S\)和汇点\(T\)。
左边一排点和\(S\)连边,右边一排点和\(T\)连边,流量为对应车道的车辆数。
两排点之间,能够匹配的就连边,注意同一车道的两个点不能连边,因为这不是一组合法的匹配。
跑出来的最大流除以\(2\),就是最大匹配数了。
为什么要除以\(2\)?我们建图跑出来的最大流并不是真正的匹配数,一个车道对应了两个点。
对于一组匹配\((a,b)\)来说,可以是左边的\(a\)匹配右边的\(b\),也可以是右边的\(a\)匹配左边的\(b\)。
但是我们得到的是最大流,感性理解,最优方案一定是最优匹配正反各做一次。
换句话说,如果在真正的最大匹配中,\((a,b)\)是其中的一组匹配,那么在我们建的图中,左右匹配两次肯定最优。
代码如下:
#include<bits/stdc++.h>
using namespace std;
int Ts,Ans,Car[200],Cp[200][3];
int Seq[200]={2,3,7,8,9,12,13,14};
void Init()
{ Cp[2][0]=3,Cp[2][1]=12,Cp[2][2]=14;
Cp[3][0]=2,Cp[3][1]=7,Cp[3][2]=9;
Cp[7][0]=3,Cp[7][1]=8,Cp[7][2]=13;
Cp[8][0]=7,Cp[8][1]=12,Cp[8][2]=14;
Cp[9][0]=3,Cp[9][1]=12,Cp[9][2]=13;
Cp[12][0]=2,Cp[12][1]=8,Cp[12][2]=9;
Cp[13][0]=7,Cp[13][1]=9,Cp[13][2]=14;
Cp[14][0]=2,Cp[14][1]=8,Cp[14][2]=13;
}
int Max(int A,int B){ return A>B?A:B; }
int Min(int A,int B){ return A<B?A:B; }
namespace Net
{ struct EDGE{ int u,v,w,Next; }Edge[100010];
int S,T,Es,First[100],Deep[100],Vis[100],Cur[100];
queue<int>Team;
void Link(int u,int v,int w){ Edge[++Es]=(EDGE){u,v,w,First[u]},First[u]=Es; }
int Bfs()
{ for(int i=S;i<=T;i++) Vis[i]=Deep[i]=0;
Team.push(S),Deep[S]=1,Vis[S]=1;
while(!Team.empty())
{ int k=Team.front(); Team.pop();
for(int i=First[k];i!=-1;i=Edge[i].Next)
{ int v=Edge[i].v;
if(Vis[v]||!Edge[i].w) continue ;
Vis[v]=1,Deep[v]=Deep[k]+1,Team.push(v);
}
}
return Deep[T];
}
int Dinic(int Pos,int Mins)
{ if(Pos==T) return Mins;
for(int &i=Cur[Pos];i!=-1;i=Edge[i].Next)
{ int v=Edge[i].v;
if(Deep[v]!=Deep[Pos]+1||!Edge[i].w) continue ;
int X=Dinic(v,Min(Mins,Edge[i].w));
if(X) return Edge[i].w-=X,Edge[i^1].w+=X,X;
}
return 0;
}
void Work()
{ while(Bfs())
{ for(int i=S;i<=T;i++) Cur[i]=First[i];
while(int Nv=Dinic(S,1e9)) Ans-=Nv;
}
}
void Build()
{ Es=-1,S=0,T=33;
for(int i=0;i<=T;i++) First[i]=-1;
for(int i=0;i<=7;i++)
{ Link(S,Seq[i],Car[Seq[i]]),Link(Seq[i],S,0);
Link(Seq[i]+16,T,Car[Seq[i]]),Link(T,Seq[i]+16,0);
for(int j=0;j<=2;j++)
{ int u=Seq[i],v=Cp[u][j];
Link(u,v+16,1e9),Link(v+16,u,0);
}
}
}
}using namespace Net;
int main()
{ Init();
for(scanf("%d",&Ts);Ts;Ts--)
{ for(int i=1;i<=16;i++) scanf("%d",&Car[i]);
Build(),Work(),Ans/=2;
for(int i=0;i<=7;i++) Ans+=Car[Seq[i]];
printf("%d\n",Max(Ans,Max(Car[4],Max(Car[5],Max(Car[10],Car[15]))))),Ans=0;
}
}