hdu 1466 计算直线的交点数 递推

以前做这道题目的时候,花了好长时间找规律,感觉十分高大上,今天回顾这个题目的时候,突然有了顿悟,

  有了递推的思想就容易解决了。

题意:给你n条直线,问:输出这些直线所有相交情况下的交点个数(升序输出)

解题思路:我们可以从n-1条直线相交的情况推导出n条直线的相交情况,考虑到直线的关系不是相交就是平行,我们可以推倒一下n=4的情况:

  已知n=3时有0,2,3;

  (1):第四条直线与前三条平行,则有0;

  (2):第四条直线与其中两条平行,则有3;

  (3):第四条直线与其中一条平行,则有4,5;

  (4):第四条直线不与任何直线平行,则有3,5,6;

  大致可以知道当有j条边与第n条直线不平行是时候有(n-j)*j加上j条直线的交点,

  得出状态dp[j][j条边的交点]存在,得出状态dp[n][(n-j)*j+j条直线的交点]存在,

 1 #include <stdio.h>
 2 #include <string.h>
 3 #define N 200//当n=20的时候交点数目最多为n*(n-1)/2 < 200
 4 
 5 int dp[21][N];//dp[直线的总数][交点的个数] = 状态(本状态存在为1,否则为0)
 6 int main ()
 7 {
 8     int i, n, j, k;
 9     for (i=0; i<21; i++)
10         dp[i][0] = 1;//所有的直线都平行
11     for (i=2; i<21; i++)//枚举n的值,并且打标
12         for (j=1; j<i; j++)//枚举与i相交的边的数目
13             for (k=0; k<N; k++)//枚举j条边的交点情况
14                 if (dp[j][k])//如果存在则推论成功
15                     dp[i][(i-j)*j+k] = 1;
16     while (scanf ("%d", &n) != EOF)
17     {
18         for (i=0; i<N; i++)
19         {
20             if (dp[n][i])
21             {
22                 if (i)
23                     printf (" ");
24                 printf ("%d", i);
25             }
26         }
27         printf ("\n");
28     }
29 }

 

posted @ 2014-11-19 11:59  罗茜  阅读(986)  评论(1编辑  收藏  举报