摘要:
电磁兼容性EMC(Electro Magnetic Compatibility),是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对 阅读全文
摘要:
由于芯片工艺不断改进,从0.35um、0.18um、0.13um到目前的40nm甚至28nm,芯片的内核电压也在不断降低,从3.3V、1.8V、1.5V到40nm器件的0.9V,芯片对电源的波动越来越敏感。 与SI相比,电源完整性PI是一个比较新的概念,实际上PI也属于SI研究的范畴,它和SI之间的 阅读全文
摘要:
造成光纤衰减的多种原因 造成光纤衰减的主要因素有:本征,弯曲,挤压,杂质,不均匀和对接等。本征:是光纤的固有损耗,包括:瑞利散射,固有吸收等。弯曲:光纤弯曲时部分光纤内的光会因散射而损失掉,造成损耗。挤压:光纤受到挤压时产生微小的弯曲而造成的损耗。杂质:光纤内杂质吸收和散射在光纤中传播的光,造成的损 阅读全文
摘要:
伪差分电平 所谓伪差分电平,就是信号在接收端是一个差分的接收器,但其中一端固定接参考电压,而另一端接单端信号线。输入信号电压与参考电压之间进行比较,作为判断输入信号高低的标准。 常用的伪差分电平标准有SSTL、HSTL等。如下图所示为HSTL信号电平连接关系图,其中分为CLASSI和CLASS II 阅读全文
摘要:
带状线:走在内层(stripline/double stripline),埋在PCB内部的带状走线,如下图所示: 蓝色部分是导体,绿色部分是PCB的绝缘电介质,stripline是嵌在两层导体之间的带状导线。 因为stripline是嵌在两层导体之间,所以它的电场分布都在两个包它的导体(平面)之间, 阅读全文
摘要:
差分标准 和单端IO不同的是,差分电平使用两根信号线来传达信号,这两根信号线在传输过程中如果遇到同样的噪声源(共模噪声)干扰,在接收端,这样的共模噪声会在两个信号相减时消除,这样并不会给接收电平造成影响。 在单端信号的传输过程中,信号往往以电源平面或地平面作参考平面,而在差分电平中,由于两根线的电流 阅读全文
摘要:
单端标准 常用的单端IO标准是LVTTL和LVCMOS。 目前业界绝大部分FPGA/CPLD器件的LVCOMS的IO是由CMOS推挽(push-pull)驱动器构成的,这种结构是上面的PMOS管和下面的NMOS管组成的。当PMOS关闭,NMOS打开时,驱动器输出低电平;相反,当NMOS关闭,PMOS 阅读全文
摘要:
由于任何传输线都不可避免地存在着引线电阻、引线电感和杂散电容,因此,一个标准的脉冲信号在经过较长的传输线后,极易产生上冲和振铃现象。大量的实验表明,引线电阻可使脉冲的平均振幅减小;而杂散电容和引线电感的存在,则是产生上冲和振铃的根本原因。在脉冲前沿上升时间相同的条件下,引线电感越大,上冲及振铃现象就 阅读全文
摘要:
在高速数字设计领域,信号完整性(SI,signal integrity)概念已经被提出来很多年了。而对可编程逻辑器件的设计工程师来说,往往对这个概念没有引起足够的重视。有的人甚至认为,做数字逻辑电路的设计跟这些知识没有什么直接关系,那就非常危险了。 任何危险,只要注意他,就可以设法避免他。 但事实上 阅读全文
摘要:
-3dB到底是什么?集成运放-3dB带宽又是什么? 以无源高通电路为例,介绍-3dB的意义。 输出与输入只比: Au=Uo/Ui=R/(R+1/j*2*PI*f*C)=1/(1+1/j*2*PI*f*R*C)。式中j*j=-1。 令fL=1/2*PI*R*C Au=1/(1+fL/jf)=jf/(j 阅读全文