切
2023.04.07 day -61
xy 询问了牛逼题:单位立方体,体心作截面,求期望面积。根据 Alice 的想法,我们将其转化为对射线积分,可又遇到了问题,难搞。
在 456 天之后,我们解决了这道题。
为方便计算,不妨研究边长为 \(2\) 的正方体。
首先转化为对射线积分:
\[E(\text{Area})\\
=\dfrac{\displaystyle\int\limits_{|\vec n|=1}\text{Area}(\vec n)\mathrm{d}\vec n}{\displaystyle\int\limits_{|\vec n|=1}1\mathrm{d}\vec n}\\
=\dfrac{1}{4\pi}\int\limits_{|\vec n|=1}\mathrm{d}\vec n\int\limits_{0}^{2\pi}\frac{1}{2}\text{Len}^2(\vec n,\theta)\mathrm{d}\theta\\
=\frac{1}{8\pi}\int\limits_{0}^{2\pi}\mathrm{d}\theta\int\limits_{|\vec n|=1}\text{Len}^2(\vec n,\theta)\mathrm{d}\vec n\\
=\frac{1}{8\pi}\int\limits_{0}^{2\pi}\mathrm{d}\theta\int\limits_{|\vec m|=1}\text{Len}^2(\vec m)\mathrm{d}\vec m\\
\]
然后把向量拆掉,选一个面的四分之一作积分区域:
\[\frac{1}{8\pi}\int\limits_{0}^{2\pi}\mathrm{d}\theta\int\limits_{|\vec m|=1}\text{Len}^2(\vec m)\mathrm{d}\vec m\\
=\frac{1}{4}\iint\limits_{(\theta,\varphi)\in \Omega_\text{All}}\text{Len}^2(\theta,\varphi)\cos\theta\mathrm{d}\theta\mathrm{d}\varphi\\
=6\iint\limits_{(\theta,\varphi)\in \Omega_1}\text{Len}^2(\theta,\varphi)\cos\theta\mathrm{d}\theta\mathrm{d}\varphi\\
\]
设出交点坐标并换元:
\[研究 \{(x,y,z)|0\leq x,y \leq 1\,z=1\} 的部分。不妨设交点 (a,b,1)。\\
\begin{cases}
\theta=\arctan\frac{1}{\sqrt{a^2+b^2}}\\
\varphi=\arctan\frac{b}{a}\\
\end{cases}\\
6\iint\limits_{(\theta,\varphi)\in \Omega_1}\text{Len}^2(\theta,\varphi)\cos\theta\mathrm{d}\theta\mathrm{d}\varphi\\
=6\iint\limits_{0\leq a,b\leq 1}\left(\sqrt{a^2+b^2+1}\right)^2\cos\left(\arctan\frac{1}{\sqrt{a^2+b^2}}\right)\left(\frac{\partial\theta}{\partial b}\frac{\partial\varphi}{\partial a}-\frac{\partial\theta}{\partial a}\frac{\partial\varphi}{\partial b}\right)\mathrm{d}a\mathrm{d}b\\
=6\iint\limits_{0\leq a,b\leq 1}\left(\sqrt{a^2+b^2+1}\right)^2\cos\left(\arctan\frac{1}{\sqrt{a^2+b^2}}\right)\left(\dfrac{-b}{(a^2+b^2+1)\sqrt{a^2+b^2}}\cdot\frac{-b}{a^2+b^2}-\dfrac{-a}{(a^2+b^2+1)\sqrt{a^2+b^2}}\cdot\frac{a}{a^2+b^2}\right)\mathrm{d}a\mathrm{d}b\\
=6\iint\limits_{0\leq a,b\leq 1}\dfrac{1}{\sqrt{a^2+b^2+1}}\mathrm{d}a\mathrm{d}b
\]
答案呼之欲出,积一下这个积分:
\[\iint\limits_{0\leq a,b\leq 1}\dfrac{1}{\sqrt{a^2+b^2+1}}\mathrm{d}a\mathrm{d}b\\
=\dfrac{1}{2}\int\limits_{0\leq b\leq 1}\ln\left(\dfrac{\sqrt{b^2+2}+1}{\sqrt{b^2+2}-1}\right)\mathrm{d}b\\
=-\dfrac{\pi}{6} + \operatorname{arcsinh}\left(\dfrac{\sqrt{2}}{2}\right)+\dfrac{1}{2}\ln\left(2+\sqrt{3}\right)
\]
单位立方体,算一下比例可得答案是 \(-\dfrac{\pi}{4} + \dfrac{3}{2}\operatorname{arcsinh}\left(\dfrac{\sqrt{2}}{2}\right)+\dfrac{3}{4}\ln\left(2+\sqrt{3}\right)\),约为 \(1.19004\)。
跑了个 \(n=10^8\) 的蒙特卡洛,可以精确到 \(10^{-4}\)。做完了!