Spark RDD Transformation 简单用例(三)
cache和persist
将RDD数据进行存储,persist(newLevel: StorageLevel)设置了存储级别,cache()和persist()是相同的,存储级别为MEMORY_ONLY。因为RDD的transformation是lazy的,只有action算子才会触发transformain真正的执行,如果一个rdd需要进行多次的action算子操作,最好能够使用cache或persist将rdd缓存至内存中,这样除第一次action会触发transformation操作,后面的action算子都不会再次触发transformation操作。
class StorageLevel private( private var _useDisk: Boolean, private var _useMemory: Boolean, private var _useOffHeap: Boolean, private var _deserialized: Boolean, private var _replication: Int = 1) /*复制份数,默认为1*/ extends Externalizable val NONE = new StorageLevel(false, false, false, false) val DISK_ONLY = new StorageLevel(true, false, false, false) val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2) val MEMORY_ONLY = new StorageLevel(false, true, false, true) val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2) val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false) val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2) val MEMORY_AND_DISK = new StorageLevel(true, true, false, true) val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2) val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false) val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2) val OFF_HEAP = new StorageLevel(true, true, true, false, 1) /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */ def persist(): this.type = persist(StorageLevel.MEMORY_ONLY) /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */ def cache(): this.type = persist()
/**
* Set this RDD's storage level to persist its values across operations after the first time
* it is computed. This can only be used to assign a new storage level if the RDD does not
* have a storage level set yet. Local checkpointing is an exception.
*/
def persist(newLevel: StorageLevel): this.type
/**
* Mark this RDD for persisting using the specified level.
*
* @param newLevel the target storage level
* @param allowOverride whether to override any existing level with the new one
*/
private def persist(newLevel: StorageLevel, allowOverride: Boolean): this.type
mapValues(func)
元素是key-value对的RDD的每一个元素的value经过func映射(key不变)构建一个新的RDD
/**
* Pass each value in the key-value pair RDD through a map function without changing the keys;
* this also retains the original RDD's partitioning.
*/
def mapValues[U](f: V => U): RDD[(K, U)]
val rdd = sc.parallelize(List((1,1),(1,2),(1,3),(2,1),(2,2),(2,3)),3) val rdd1 = rdd.mapValues(x=>1L) rdd1.foreachPartition(it=>{ while(it.hasNext){ println(it.next) } println("================") }
)
scala> val rdd = sc.parallelize(List((1,1),(1,2),(1,3),(2,1),(2,2),(2,3)),3) rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[1] at parallelize at <console>:24 scala> val rdd1 = rdd.mapValues(x=>1L) rdd1: org.apache.spark.rdd.RDD[(Int, Long)] = MapPartitionsRDD[2] at mapValues at <console>:26 scala> rdd1.foreachPartition(it=>{ | while(it.hasNext){ | println(it.next) | } | println("================") | } | ) (1,1) (1,1) ================ (1,1) (2,1) ================ (2,1) (2,1) ================
以上就是将(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)中的value重新赋值为1,变为(1,1),(1,1),(1,1),(2,1),(2,1),(2,1)。下面使用reduceByKey计算每一个key出现的次数。
scala> val rdd1 = rdd.mapValues(x=>1L).reduceByKey(_ + _) rdd1: org.apache.spark.rdd.RDD[(Int, Long)] = ShuffledRDD[4] at reduceByKey at <console>:26 scala> rdd1.collect.toMap res4: scala.collection.immutable.Map[Int,Long] = Map(1 -> 3, 2 -> 3)
其实以上操作就是action算子countByKey()的实现。
collect(f: PartialFunction[T, U])
/**
* Return an RDD that contains all matching values by applying `f`.
*/
def collect[U: ClassTag](f: PartialFunction[T, U]): RDD[U]
PartialFunction[T,U]是个什么东东呢?看一下PartialFunction的apply函数,即需要定义一个f(x)函数,入参类型为A,结果输出类型为B
/** Converts ordinary function to partial one * @since 2.10 */ def apply[A, B](f: A => B): PartialFunction[A, B] = { case x => f(x) }
val f : PartialFunction[Int,String] = {case 0 => "Sunday" case 1 => "Monday" case 2 => "Tuesday" case 3 => "Wednesday" case 4 => "Thursday" case 5 => "Friday" case 6 => "Saturday" case _ => "Unknown" } val rdd = sc.parallelize(0 to 9) rdd.collect(f).collect res3: Array[String] = Array(Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Unknown, Unknown, Unknown)
glom()
将每个partition中的元素合并成一个数组
/**
* Return an RDD created by coalescing all elements within each partition into an array.
*/
def glom(): RDD[Array[T]]
scala> val rdd = sc.parallelize(1 to 9,3) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[9] at parallelize at <console>:24 scala> rdd.glom res7: org.apache.spark.rdd.RDD[Array[Int]] = MapPartitionsRDD[10] at glom at <console>:27 scala> rdd.glom.collect res8: Array[Array[Int]] = Array(Array(1, 2, 3), Array(4, 5, 6), Array(7, 8, 9))
subtract(other: RDD[T])
返回other中不存在的元素组成新的RDD,分区属性如果没有指定,则和原RDD保持一致。
/**
* Return an RDD with the elements from `this` that are not in `other`.
*
* Uses `this` partitioner/partition size, because even if `other` is huge, the resulting
* RDD will be <= us.
*/
def subtract(other: RDD[T]): RDD[T]
val rdd1 = sc.parallelize(1 to 10,2) val rdd2 = sc.parallelize(5 to 20,3) val rdd = rdd1.subtract(rdd2) rdd.collect rdd.partitions.length
scala> val rdd1 = sc.parallelize(1 to 10,2) rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24 scala> val rdd2 = sc.parallelize(5 to 20,3) rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:24 scala> val rdd = rdd1.subtract(rdd2) rdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[5] at subtract at <console>:28 scala> rdd.collect res0: Array[Int] = Array(2, 4, 1, 3) scala> rdd.partitions.length res2: Int = 2
指定分区数量
/**
* Return an RDD with the elements from `this` that are not in `other`.
*/
def subtract(other: RDD[T], numPartitions: Int): RDD[T]
scala> val rdd = rdd1.subtract(rdd2,5) rdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[9] at subtract at <console>:28 scala> rdd.partitions.length res3: Int = 5
自定义分区属性partitioner
/**
* Return an RDD with the elements from `this` that are not in `other`.
*/
def subtract(
other: RDD[T],
p: Partitioner)(implicit ord: Ordering[T] = null): RDD[T]
class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{ override def numPartitions: Int = numParts override def getPartition(key: Any): Int = { key.toString.toInt%numPartitions } } val rdd = rdd1.subtract(rdd2,new MyPartitioner(3)) rdd.foreachPartition( x=>{ while(x.hasNext){ println(x.next) } println("============") } )
scala> class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{ | override def numPartitions: Int = numParts | override def getPartition(key: Any): Int = { | key.toString.toInt%numPartitions | } | } defined class MyPartitioner scala> val rdd = rdd1.subtract(rdd2,new MyPartitioner(3)) rdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[13] at subtract at <console>:29 scala> rdd.foreachPartition( | x=>{ | while(x.hasNext){ | println(x.next) | } | println("============") | } | ) 3 ============ 1 4 ============ 2 ============
zip
两个RDD对应位置(按顺序)组成key-value对创建新的RDD,两个RDD的元素在每个分区中数量必须相同,partition数量必须相同。
/**
* Zips this RDD with another one, returning key-value pairs with the first element in each RDD,
* second element in each RDD, etc. Assumes that the two RDDs have the *same number of
* partitions* and the *same number of elements in each partition* (e.g. one was made through
* a map on the other).
*/
def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)]
val rdd1 = sc.parallelize(1 to 5,2) val rdd2 = sc.parallelize(List("one","two","three","four","five"),2) val rdd = rdd1.zip(rdd2) rdd.collect
scala> val rdd1 = sc.parallelize(1 to 5,2) rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[14] at parallelize at <console>:24 scala> val rdd2 = sc.parallelize(List("one","two","three","four","five"),2) rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[15] at parallelize at <console>:24 scala> val rdd = rdd1.zip(rdd2) rdd: org.apache.spark.rdd.RDD[(Int, String)] = ZippedPartitionsRDD2[16] at zip at <console>:28 scala> rdd.collect res5: Array[(Int, String)] = Array((1,one), (2,two), (3,three), (4,four), (5,five))
combineByKey
/**
* Simplified version of combineByKeyWithClassTag that hash-partitions the resulting RDD using the
* existing partitioner/parallelism level. This method is here for backward compatibility. It
* does not provide combiner classtag information to the shuffle.
*
* @see [[combineByKeyWithClassTag]]
*/
def combineByKey[C](
createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C): RDD[(K, C)]
var rdd = sc.parallelize(Array(("A",1),("A",2),("A",3),("B",1),("B",2),("C",1))) rdd.combineByKey( (v : Int) => v + "$", (c : String, v : Int) => c + "@" + v, (c1 : String, c2 : String) => c1 + "||" + c2 ).collect
scala> var rdd = sc.parallelize(Array(("A",1),("A",2),("A",3),("B",1),("B",2),("C",1))) rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[29] at parallelize at <console>:24 scala> rdd.combineByKey( | (v : Int) => v + "$", | (c : String, v : Int) => c + "@" + v, | (c1 : String, c2 : String) => c1 + "||" + c2 | ).collect res20: Array[(String, String)] = Array((B,1$@2), (A,1$@2@3), (C,1$))
没看明白啊!没看明白啊!没看明白啊!没看明白啊!没看明白啊!
flatMapValues
与flatMap类似,只是value经过函数f映射后得到1个或多个元素与key组成新的key-value,然后创建新的RDD。
/**
* Pass each value in the key-value pair RDD through a flatMap function without changing the
* keys; this also retains the original RDD's partitioning.
*/
def flatMapValues[U](f: V => TraversableOnce[U]): RDD[(K, U)]
var rdd = sc.parallelize(Array(("A",1),("A",2),("A",3),("B",1),("B",2),("C",1)))
rdd.flatMapValues(x => { x to 3}).collect
scala> var rdd = sc.parallelize(Array(("A",1),("A",2),("A",3),("B",1),("B",2),("C",1))) rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[32] at parallelize at <console>:24 scala> rdd.flatMapValues(x => { x to 3}) res24: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[33] at flatMapValues at <console>:27 scala> rdd.flatMapValues(x => { x to 3}).collect res25: Array[(String, Int)] = Array((A,1), (A,2), (A,3), (A,2), (A,3), (A,3), (B,1), (B,2), (B,3), (B,2), (B,3), (C,1), (C,2), (C,3))
foldByKey
对每一个key的value进行聚合运算,其中zeroValue会与每一个key组成一个key-value对参与运算。
/**
* Merge the values for each key using an associative function and a neutral "zero value" which
* may be added to the result an arbitrary number of times, and must not change the result
* (e.g., Nil for list concatenation, 0 for addition, or 1 for multiplication.).
*/
def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]
var rdd = sc.parallelize(Array(("A",1),("A",2),("A",3),("B",1),("B",2),("C",1))) rdd.foldByKey(0)(_+_) rdd.foldByKey(0)(_+_).collect rdd.foldByKey(1)(_+_) rdd.foldByKey(1)(_+_).collect
scala> var rdd = sc.parallelize(Array(("A",1),("A",2),("A",3),("B",1),("B",2),("C",1))) rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[35] at parallelize at <console>:24 scala> rdd.foldByKey(0)(_+_) res26: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[36] at foldByKey at <console>:27 scala> rdd.foldByKey(0)(_+_).collect res27: Array[(String, Int)] = Array((B,3), (A,6), (C,1)) scala> rdd.foldByKey(1)(_+_) res28: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[38] at foldByKey at <console>:27 scala> rdd.foldByKey(1)(_+_).collect res29: Array[(String, Int)] = Array((B,4), (A,7), (C,2))
keys
返回key-value的所有key.
/**
* Return an RDD with the keys of each tuple.
*/
def keys: RDD[K] = self.map(_._1)
scala> var rdd = sc.parallelize(Array(("A",1),("A",2),("A",3),("B",1),("B",2),("C",1))) rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[42] at parallelize at <console>:24 scala> rdd.keys.collect res32: Array[String] = Array(A, A, A, B, B, C)
values
返回key-value的所有value.
/**
* Return an RDD with the values of each tuple.
*/
def values: RDD[V] = self.map(_._2)
scala> var rdd = sc.parallelize(Array(("A",1),("A",2),("A",3),("B",1),("B",2),("C",1))) rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[44] at parallelize at <console>:24 scala> rdd.values res33: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[45] at values at <console>:27 scala> rdd.values.collect res34: Array[Int] = Array(1, 2, 3, 1, 2, 1)