二项概率公式的泊松逼近证明
泊松定理内容
设实验\(E\)是由实验\(E_0\)形成的n重伯努利概型,\(A\)和\(\overline{A}\)是\(E_0\)的事件,\(P(A) = p_n\) , \(P(\overline{A})=1-p_n=q_n(0<p_n<1)\)
则当\(n\rightarrow+\infty且\lambda_n=np_n\rightarrow\lambda(\lambda>0为常数)\)时,事件A发生k(k为非负整数)次的概率
\[\lim_{n\rightarrow+\infty}P_n(k)=\lim_{n\rightarrow+\infty}C_n^kp_n^kq_n^{n-k}=\frac{\lambda^k}{k!}e^{-\lambda}
\]
证明
由于\(\lambda_n=np_n\),从而有\(p_n=\frac{\lambda_n}{n}\),于是有
\[\begin{align*}
p_n(k)&= C_n^kp_n^k(1-p_n)^{n-k} \\
&=\frac{n(n-1)...(n-k+1)}{k!}(\frac{\lambda_n}{n})^k(1-\frac{\lambda_n}{n})^{n-k} \\
&=\frac{n(n-1)...(n-k+1)}{k!}(\frac{{(\lambda_n)}^k }{n^k})(1-\frac{\lambda_n}{n})^{n-k} \\
&=\frac{n(n-1)...(n-k+1)}{n^k}(\frac{{(\lambda_n)}^k }{k!})(1-\frac{\lambda_n}{n})^{n-k} \\
&=\frac{{\lambda_n}^k }{k!}(1-\frac{1}{n})(1-\frac{2}{n})...(1-\frac{k-1}{n})(1-\frac{\lambda_n}{n})^{n-k}
\end{align*}
\]
又由于k是固定的,固定意味着有限。有限个1相乘还是1,所以
\[\lim_{n\rightarrow+\infty}(1-\frac{1}{n})(1-\frac{2}{n})...(1-\frac{k-1}{n})=1
\]
n-k也趋近于无穷,所以
\[\begin{align*}
\lim_{n\rightarrow+\infty}(1-\frac{\lambda_n}{n})^{n-k}&=(1-\frac{\lambda_n}{n})^n \\
&=e^{nln(1-\frac{\lambda_n}{n})}\\
&=e^{ln(1-\frac{\lambda_n}{n})/\frac{1}{n}}\\
设\frac{1}{n}为x,x\rightarrow0,原式&=e^{\frac{ln(1-x\lambda)}{x}}\\
&=e^{\frac{-x\lambda}{x}}\\
&=e^{-\lambda}
\end{align*}
\]
所以有
\[\lim_{n\rightarrow+\infty}C_n^kp_n^k(1-p_n)^{n-k}==\frac{\lambda^k}{k!}e^{-\lambda}
\]