networkX——根据一组line构建图

1.根据一组lines构建graph

  • 教程来源,基础数据都在nx.example文件夹中
  • 从lines创建graph通常有两种方法
    • 方法1:原始法(primal approach),每个交叉点是一个节点
    • 方法2: 对偶法(dual approach),每条线都是一个节点,相交拓扑被转换为边
  • 例子:对道路网络进行分析
import geopandas as gpd
import matplotlib.pyplot as plt
import momepy
import networkx as nx
from contextily import add_basemap
from libpysal import weights
import itertools

1读取rivers数据(一组line),构造primal graph

1.1读取数据

rivers = gpd.read_file(r"E:\code_practice\gitee\Python地理空间分析指南\nx_study\networkx\examples\geospatial\rivers.geojson")
rivers.head()
Length id geometry
0 8726.582 0 LINESTRING (554143.903 9370463.606, 554090.774...
1 4257.036 1 LINESTRING (556297.090 9365917.050, 555900.606...
2 4126.414 2 LINESTRING (556950.010 9367879.530, 556969.360...
3 1193.850 3 LINESTRING (557295.943 9363890.831, 557179.526...
4 3678.113 4 LINESTRING (557237.735 9362710.787, 557322.402...
rivers.plot()
<AxesSubplot:>


png

1.2构造primal graph

  • momepy 将gdf 转为graph
# 构造原始图
G = momepy.gdf_to_nx(rivers)
nx.draw(G,node_size = 10)


png

  • 看一下G中的节点和边信息
    • 每个节点的编号类型是tuple,值为坐标值
# 节点信息展示方法1:
G.nodes()(data= True)
NodeDataView({(554143.9027843038, 9370463.606285565): {'nodeID': 0}, (558080.5283343233, 9366376.590186208): {'nodeID': 1}, (556297.0900288569, 9365917.049970472): {'nodeID': 2}, (557237.7347526932, 9362710.78680345): {'nodeID': 3}, (556950.0100390166, 9367879.529990936): {'nodeID': 4}, (557295.9432376046, 9363890.830840945): {'nodeID': 5}, (560098.0373490807, 9362989.473788045): {'nodeID': 6}, (557427.1586279813, 9364610.527111784): {'nodeID': 7}, (559631.0745073119, 9364934.686608903): {'nodeID': 8}, (561623.109724192, 9370725.055553077): {'nodeID': 9}, (560319.5985694304, 9363042.402333023): {'nodeID': 10}, (559897.2550022183, 9369874.224961167): {'nodeID': 11}, (559964.2083513336, 9369823.988749623): {'nodeID': 12}, (559935.5000161575, 9368146.289991278): {'nodeID': 13}, (563385.142031962, 9362997.808577871): {'nodeID': 14}, (560815.479997918, 9365530.6899789): {'nodeID': 15}, (561911.1800359832, 9371902.45004887): {'nodeID': 16}, (564386.6599322492, 9362527.618199058): {'nodeID': 17}, (565364.2537775692, 9362503.81157242): {'nodeID': 18}, (566802.417236859, 9360379.115381433): {'nodeID': 19}})
# 提取节点坐标值,转为dict,赋值给positions
# key:节点编号;value:坐标
positions = {n: [n[0], n[1]] for n in list(G.nodes)}
# 切片展示
positions_head = dict(itertools.islice(positions.items(), 5))
positions_head
{(554143.9027843038, 9370463.606285565): [554143.9027843038,
  9370463.606285565],
 (558080.5283343233, 9366376.590186208): [558080.5283343233,
  9366376.590186208],
 (556297.0900288569, 9365917.049970472): [556297.0900288569,
  9365917.049970472],
 (557237.7347526932, 9362710.78680345): [557237.7347526932, 9362710.78680345],
 (556950.0100390166, 9367879.529990936): [556950.0100390166,
  9367879.529990936]}

1.3Plot

f, ax = plt.subplots(1, 2, figsize=(12, 6), sharex=True, sharey=True)
rivers.plot(color="k", ax=ax[0])
for i, facet in enumerate(ax):
    facet.set_title(("Rivers", "Graph")[i])
    facet.axis("off")
nx.draw(G, positions, ax=ax[1], node_size=5)


png

1.4graph to gdf

  • nodes:节点gdf
  • edges:边gdf
  • W:表示节点之间的关系
nodes, edges, W = momepy.nx_to_gdf(G, spatial_weights=True)
nodes.head()
nodeID geometry
0 0 POINT (554143.903 9370463.606)
1 1 POINT (558080.528 9366376.590)
2 2 POINT (556297.090 9365917.050)
3 3 POINT (557237.735 9362710.787)
4 4 POINT (556950.010 9367879.530)
edges.head()
Length id geometry mm_len node_start node_end
0 8726.582 0 LINESTRING (554143.903 9370463.606, 554090.774... 8723.436442 0 1
1 1884.698 6 LINESTRING (558080.528 9366376.590, 557602.861... 1884.022069 1 7
2 2233.621 8 LINESTRING (558080.528 9366376.590, 558315.077... 2232.823547 1 8
3 2306.128 21 LINESTRING (558080.528 9366376.590, 558150.800... 2305.303826 1 8
4 4257.036 1 LINESTRING (556297.090 9365917.050, 555900.606... 4255.498818 2 3
W.neighbors   #键是节点id ,值是邻接边id
{0: [1],
 1: [0, 7, 8],
 2: [3],
 3: [2, 5, 6],
 4: [5],
 5: [3, 4, 7],
 6: [3, 7, 10],
 7: [1, 5, 6],
 8: [1, 9, 10],
 9: [8, 12, 16],
 10: [6, 8, 14],
 11: [12],
 12: [9, 11, 13],
 13: [12],
 14: [10, 15, 17],
 15: [14],
 16: [9],
 17: [14, 18, 19],
 18: [17],
 19: [17]}
W.weights  #键是节点ID,值是邻接边权重的list
{0: [1.0],
 1: [1.0, 1.0, 1.0],
 2: [1.0],
 3: [1.0, 1.0, 1.0],
 4: [1.0],
 5: [1.0, 1.0, 1.0],
 6: [1.0, 1.0, 1.0],
 7: [1.0, 1.0, 1.0],
 8: [1.0, 1.0, 1.0],
 9: [1.0, 1.0, 1.0],
 10: [1.0, 1.0, 1.0],
 11: [1.0],
 12: [1.0, 1.0, 1.0],
 13: [1.0],
 14: [1.0, 1.0, 1.0],
 15: [1.0],
 16: [1.0],
 17: [1.0, 1.0, 1.0],
 18: [1.0],
 19: [1.0]}

2.读取街道数据,构造priaml graph

2.1读取momepy中的示例数据

streets = gpd.read_file(momepy.datasets.get_path("bubenec"), layer="streets")
streets.head()  #
geometry
0 LINESTRING (1603585.640 6464428.774, 1603413.2...
1 LINESTRING (1603268.502 6464060.781, 1603296.8...
2 LINESTRING (1603607.303 6464181.853, 1603592.8...
3 LINESTRING (1603678.970 6464477.215, 1603675.6...
4 LINESTRING (1603537.194 6464558.112, 1603557.6...
streets.plot() #街道
<AxesSubplot:>


png

2.2构造primal graph

G_primal = momepy.gdf_to_nx(streets,approach="primal")

2.3 Plot

f, ax = plt.subplots(1, 2, figsize=(12, 6), sharex=True, sharey=True)
# 初始的街道数据,gdf
streets.plot(color="k", ax=ax[0])   
for i, facet in enumerate(ax):
    facet.set_title(("Streets", "Graph")[i])
    facet.axis("off")
    add_basemap(facet)
# graph可视化
nx.draw(
    G_primal, {n: [n[0], n[1]] for n in list(G_primal.nodes)}, ax=ax[1], node_size=50
)


png

3.构建对偶图

  • mommy将行属性存储为节点属性,并自动测量line之间的角度。
G_dual = momepy.gdf_to_nx(streets, approach="dual")
<networkx.classes.multigraph.MultiGraph at 0x280eb0a2e00>

3.1对偶图可视化

# 对偶图可视化
f, ax = plt.subplots(1, 2, figsize=(12, 6), sharex=True, sharey=True)
streets.plot(color="k", ax=ax[0])
for i, facet in enumerate(ax):
    facet.set_title(("Streets", "Graph")[i])
    facet.axis("off")
    add_basemap(facet)
nx.draw(G_dual, {n: [n[0], n[1]] for n in list(G_dual.nodes)}, ax=ax[1], node_size=50)
plt.show()


png

3.2 对偶图to gdf

lines = momepy.nx_to_gdf(G_dual)
lines.head() #对偶图to gdf ,返回原始line的geometry
geometry mm_len
0 LINESTRING (1603585.640 6464428.774, 1603413.2... 264.103950
1 LINESTRING (1603607.303 6464181.853, 1603592.8... 199.746503
2 LINESTRING (1603287.304 6464587.705, 1603286.8... 382.501950
3 LINESTRING (1603363.558 6464031.885, 1603376.5... 203.014090
4 LINESTRING (1603413.206 6464228.730, 1603274.4... 198.482724
# 从下图可以看到,对偶图转为gdf时, 返回原始line的geometry
lines.plot()
<AxesSubplot:>


png

posted @ 2023-01-17 15:34  sheyueyu  阅读(151)  评论(0编辑  收藏  举报