matlab 降维工具箱
-
Principal Component Analysis (PCA)
-
• Probabilistic PCA
-
• Factor Analysis (FA)
-
• Sammon mapping
-
• Linear Discriminant Analysis (LDA)
-
• Multidimensional scaling (MDS)
-
• Isomap
-
• Landmark Isomap
-
• Local Linear Embedding (LLE)
-
• Laplacian Eigenmaps
-
• Hessian LLE
-
• Local Tangent Space Alignment (LTSA)
-
• Conformal Eigenmaps (extension of LLE)
-
• Maximum Variance Unfolding (extension of LLE)
-
• Landmark MVU (LandmarkMVU)
-
• Fast Maximum Variance Unfolding (FastMVU)
-
• Kernel PCA
-
• Generalized Discriminant Analysis (GDA)
-
• Diffusion maps
-
• Neighborhood Preserving Embedding (NPE)
-
• Locality Preserving Projection (LPP)
-
• Linear Local Tangent Space Alignment (LLTSA)
-
• Stochastic Proximity Embedding (SPE)
-
• Multilayer autoencoders (training by RBM + backpropagation or by an evolutionary algorithm)
-
• Local Linear Coordination (LLC)
-
• Manifold charting
-
• Coordinated Factor Analysis (CFA)
-
• Gaussian Process Latent Variable Model (GPLVM)
-
• Stochastic Neighbor Embedding (SNE)
-
• Symmetric SNE (SymSNE)
-
• new: t-Distributed Stochastic Neighbor Embedding (t-SNE)
-
• new: Neighborhood Components Analysis (NCA)
-
• new: Maximally Collapsing Metric Learning (MCML)
posted on 2014-09-25 10:12 alexanderkun 阅读(2347) 评论(0) 编辑 收藏 举报