14-numpy笔记-莫烦pandas-2
代码
import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFrame(np.arange(24).reshape((6,4)), index=dates, columns=['A','B','C','D']) print('-1-') print(df) print('-2-') print(df['A'],df.A) print('-3-') print(df[0:3],df['20130102':'20130104']) print('-4-') print(df.loc['20130102']) print('-5-') # 打印AB列 print(df.loc[:,['A','B']]) print('-6-') print(df.loc['20130102',['A','B']]) # 筛选 [行,列] : 左闭右开 # 第三行,零初始 print('-7-') print(df.iloc[3]) print('-8-') print(df.iloc[3,1]) print('-9-') print(df.iloc[3:5,1:3]) print('-10-') print(df.iloc[[1,3,5],1:3]) print('-11-') print(df.ix[:3,['A','C']]) print('-12-') #条件筛选 print(df[df.A > 8])
结果
-1- A B C D 2013-01-01 0 1 2 3 2013-01-02 4 5 6 7 2013-01-03 8 9 10 11 2013-01-04 12 13 14 15 2013-01-05 16 17 18 19 2013-01-06 20 21 22 23 -2- 2013-01-01 0 2013-01-02 4 2013-01-03 8 2013-01-04 12 2013-01-05 16 2013-01-06 20 Freq: D, Name: A, dtype: int32 2013-01-01 0 2013-01-02 4 2013-01-03 8 2013-01-04 12 2013-01-05 16 2013-01-06 20 Freq: D, Name: A, dtype: int32 -3- A B C D 2013-01-01 0 1 2 3 2013-01-02 4 5 6 7 2013-01-03 8 9 10 11 A B C D 2013-01-02 4 5 6 7 2013-01-03 8 9 10 11 2013-01-04 12 13 14 15 -4- A 4 B 5 C 6 D 7 Name: 2013-01-02 00:00:00, dtype: int32 -5- A B 2013-01-01 0 1 2013-01-02 4 5 2013-01-03 8 9 2013-01-04 12 13 2013-01-05 16 17 2013-01-06 20 21 -6- A 4 B 5 Name: 2013-01-02 00:00:00, dtype: int32 -7- A 12 B 13 C 14 D 15 Name: 2013-01-04 00:00:00, dtype: int32 -8- 13 -9- B C 2013-01-04 13 14 2013-01-05 17 18 -10- B C 2013-01-02 5 6 2013-01-04 13 14 2013-01-06 21 22 -11- A C 2013-01-01 0 2 2013-01-02 4 6 2013-01-03 8 10 -12- A B C D 2013-01-04 12 13 14 15 2013-01-05 16 17 18 19 2013-01-06 20 21 22 23