11-numpy笔记-莫烦基础操作1
代码
import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) print('-2-') print('', array.shape) a = np.array([1,2,3]) print('-3-') print(a) a = np.array([1,2,3], dtype=np.int) print('-4-') print(a.dtype) a = np.array([1,2,3], dtype=np.int64) print('-5-') print(a.dtype) a = np.array([1,2,3], dtype=np.float32) print('-6-') print(a.dtype) a = np.array([1,2,3], dtype=np.float64) print('-7-') print(a.dtype) a = np.array([[1,2,3], [4,5,6]], dtype=np.float32) print('-8-') print(a) # shape a = np.zeros((3,4)) print('-9-') print(a) # shape a = np.ones((3,4), dtype=np.int16) print('-10-') print(a) # very close to zero a = np.empty((3,4), dtype=np.float64) print('-11-') print(a) # [) a = np.arange(10, 20) print('-12-') print(a) # [) step 2 a = np.arange(10, 20, 2) print('-13-') print(a) a = np.arange(12).reshape((3,4)) print('-14-') print(a) # linspace, a = np.linspace(1,10,20) print('-15-') print(a) # linspace, a = np.linspace(1,10,20).reshape((5,4)) print('-16-') print(a) # linspace, a = np.arange(2, 14).reshape((3,4)) print('-17-') print(a) print('-18-') print(np.argmin(a)) print('-19-') print(np.argmax(a)) print('-20-') print(np.mean(a)) print('-21-') print(a.mean()) print('-22-') print(np.average(a)) # 之前所有数的累加值 print('-23-') print(np.cumsum(a)) # 之前所有数的累差值 print('-24-') print(np.diff(a)) # 行序号,列序号 print('-25-') print(np.nonzero(a)) # (array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int64), array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int64)) print('-26-') print(np.sort(a)) a = np.arange(14, 2, -1).reshape((3,4)) print('-27-') print(a) print('-28-') print(np.sort(a)) print('-29-') print(np.transpose(a)) print('-30-') print(a.T) print('-31-') print((a.T).dot(a)) # 小于5等于5,大于9等于9 print('-32-') print(np.clip(a,5,9)) # 列平均 print('-33-') print(np.mean(a,axis=0)) # 行平均 print('-34-') print(np.mean(a,axis=1))
输出
-1- 数组维度 2 -2- (2, 3) -3- [1 2 3] -4- int32 -5- int64 -6- float32 -7- float64 -8- [[1. 2. 3.] [4. 5. 6.]] -9- [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]] -10- [[1 1 1 1] [1 1 1 1] [1 1 1 1]] -11- [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]] -12- [10 11 12 13 14 15 16 17 18 19] -13- [10 12 14 16 18] -14- [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] -15- [ 1. 1.47368421 1.94736842 2.42105263 2.89473684 3.36842105 3.84210526 4.31578947 4.78947368 5.26315789 5.73684211 6.21052632 6.68421053 7.15789474 7.63157895 8.10526316 8.57894737 9.05263158 9.52631579 10. ] -16- [[ 1. 1.47368421 1.94736842 2.42105263] [ 2.89473684 3.36842105 3.84210526 4.31578947] [ 4.78947368 5.26315789 5.73684211 6.21052632] [ 6.68421053 7.15789474 7.63157895 8.10526316] [ 8.57894737 9.05263158 9.52631579 10. ]] -17- [[ 2 3 4 5] [ 6 7 8 9] [10 11 12 13]] -18- 0 -19- 11 -20- 7.5 -21- 7.5 -22- 7.5 -23- [ 2 5 9 14 20 27 35 44 54 65 77 90] -24- [[1 1 1] [1 1 1] [1 1 1]] -25- (array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int64), array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int64)) -26- [[ 2 3 4 5] [ 6 7 8 9] [10 11 12 13]] -27- [[14 13 12 11] [10 9 8 7] [ 6 5 4 3]] -28- [[11 12 13 14] [ 7 8 9 10] [ 3 4 5 6]] -29- [[14 10 6] [13 9 5] [12 8 4] [11 7 3]] -30- [[14 10 6] [13 9 5] [12 8 4] [11 7 3]] -31- [[332 302 272 242] [302 275 248 221] [272 248 224 200] [242 221 200 179]] -32- [[9 9 9 9] [9 9 8 7] [6 5 5 5]] -33- [10. 9. 8. 7.] -34- [12.5 8.5 4.5]