00-赵志勇机器学习-Logistics_Regression-data.txt(转载)
4.45925637575900 8.22541838354701 0 0.0432761720122110 6.30740040001402 0 6.99716180262699 9.31339338579386 0 4.75483224215432 9.26037784240288 0 8.66190392439652 9.76797698918454 0 7.17376551727269 8.69456339325210 0 0.134053879775005 1.96878052943837 0 2.95850718791494 5.80458392655308 0 0.162199197495798 2.59575596457315 0 3.99590517062991 8.83289511075255 0 6.13130341636350 9.18109248691241 0 4.13802790208159 9.60748524925563 0 8.90049077697510 9.99329318936273 0 4.15371012638716 9.53922527310308 0 3.47806488316686 7.80788315923614 0 5.04287107839320 9.38996803836429 0 2.56324459286653 7.83286351946551 0 5.42032358874179 8.77024851395462 0 2.78940677946772 5.84911155908821 0 1.69377595965126 3.42939148982086 0 2.57907558635543 5.85738793565177 0 4.82185528268354 9.96169885562949 0 0.253602746238408 7.45945161909674 0 8.14641315834860 9.88547372518201 0 1.07252390677591 9.64544522650273 0 3.96810711848012 9.37483872272884 0 7.78456478657554 9.21622730177576 0 5.68031802716968 9.55034658708916 0 0.188925610590359 1.86579459185882 0 3.39042984564948 5.22734216789434 0 0.306872061364665 8.10706884864857 0 2.94520568616781 8.89485671892082 0 1.56257145202601 7.59114877849288 0 7.88040432728020 9.72811231772191 0 2.06663143127242 5.55531983916915 0 3.26847684673349 5.80133323123041 0 3.03572486052262 4.55438209687869 0 4.06403686804154 7.30824174639464 0 0.261319587511897 6.82874924285753 0 0.535129082770840 2.96735234780109 0 6.16211768166533 8.73591445232541 0 0.0543225029100144 3.63143937000534 0 3.38950408283417 5.21140264842544 0 0.670802539239751 5.50842093397427 0 3.33354941448896 9.00586384747725 0 4.83782090456725 9.24046925519147 0 4.14342743933778 5.21158367718785 0 0.0448488462892471 2.53343482171120 0 3.29344955007619 8.39195386760030 0 1.43481273099994 4.54377111225283 0 5.80444602917862 7.72222238849776 0 2.89737803415351 4.84582798104369 0 3.48896826617082 9.42538199279707 0 7.98990181138566 9.38748992074748 0 6.07911967934092 7.81580715692381 0 8.54988937636567 9.83106545896296 0 1.86253147316586 3.64519173433558 0 5.09264649345917 7.16456405109382 0 0.640487340762152 2.96504627163533 0 0.445682665759531 7.27017831379406 0 7.03580231161425 9.62162716377990 0 2.38548233873891 9.31142472376713 0 5.47187479221741 6.52268275403238 0 3.09625873884070 7.24687725634908 0 5.64986319346389 8.14649426712568 0 7.29995079462111 8.54616550280286 0 8.77346437600257 9.96234073280813 0 3.06091044795100 7.72080944560689 0 2.73380551789568 4.29286766635781 0 4.69373224420759 9.24765856154850 0 6.87533960169376 9.88875131106959 0 3.00192545879843 6.33960532829528 0 1.35371591887987 4.90531471836317 0 4.98310945603791 8.19357999963722 0 1.44378940451651 3.32854209513079 0 3.58695390614628 9.08726843217394 0 1.66501084835760 6.33826894701403 0 1.13683031909428 8.93555055642300 0 6.89981119465722 9.08506017228389 0 3.50612434749800 7.19887972236541 0 7.98213686241980 9.90335214596799 0 4.48550059813567 7.87469534845766 0 8.18730647207947 9.65752968521276 0 6.98206593291099 9.31671668967771 0 4.22691515046792 6.27588464716913 0 5.42330764790338 7.08234539249773 0 1.77758743959901 9.00325034532830 0 1.13084327057428 7.21101548428525 0 3.93586389272097 8.03817933454068 0 6.63734173280782 8.35388742591753 0 0.386709419537340 8.58317856311490 0 3.32377361598771 8.07768523594907 0 8.06147926210387 9.31872691969549 0 8.98108629344805 9.99686700846425 0 7.12209318712481 9.35515066520718 0 4.89305717339869 7.48113528632786 0 7.40008878777077 9.35257115162952 0 7.03477188625162 9.97577769141571 0 7.09428420398105 9.71970901043399 0 4.37051546270230 9.41555568974276 0 4.00462374868525 0.616899669845488 1 5.44921361045783 0.138855328072746 1 8.44816973291296 1.96823424949569 1 7.09749399121559 4.84058301823207 1 7.13659478263630 3.99344574129641 1 3.13607555660068 1.01976990251471 1 9.42777338698193 2.03196575362135 1 2.88202491477532 0.512799144639290 1 7.98235678340026 2.31403273981939 1 6.42767231292936 0.998772381680681 1 1.78712965201534 0.243156456792515 1 3.07790563815491 1.88920490138202 1 9.43195911269671 0.268801081716839 1 6.34282338934720 0.234109280621259 1 4.82412559000009 1.99459231605986 1 8.56305479341248 4.72713371076877 1 3.29684212405129 2.07793293965495 1 7.90570542236263 3.88560220548909 1 9.07438180273557 2.97201368564586 1 4.03957906251732 1.88105978289717 1 1.78205895950614 0.293661208884570 1 2.68642960682293 1.36689620711673 1 7.50923375595256 4.39161107527268 1 9.22583275513275 6.75308704026472 1 5.93852172849132 0.0767525003841111 1 1.85217721700788 0.438665288257335 1 9.57234374408993 7.22701037061452 1 9.41511021370755 8.19137839466097 1 4.35273751059844 1.07589578304157 1 8.04923110762197 1.49599991038707 1 9.63236985254770 8.03011417611781 1 4.29156538673758 1.13530168347901 1 7.23413465556835 4.46740498567466 1 8.20309146793921 4.27626275005668 1 1.87457510864822 0.489332789968566 1 1.38780964339963 0.293816887566648 1 6.93682776203853 3.55888673905837 1 3.04295274833797 1.45808471523332 1 7.52052171782518 2.24448074758751 1 1.29475743274558 0.248662041648605 1 7.93270103161629 3.53322776478622 1 7.36266950886594 5.03397809680607 1 3.97602116402406 2.71911655949805 1 6.19034466536054 1.49434836516839 1 3.40178374234313 2.13801547822256 1 4.29491070615890 0.494287306651284 1 9.51694812792873 5.54313061426752 1 9.83993111985939 1.71347650375439 1 8.45868335411795 3.68311342408982 1 6.31700682494856 0.238683478937646 1 6.08012336783280 3.21848321902105 1 5.48289786541560 0.267286639106428 1 5.63646865791522 0.246636667516577 1 8.59268728497635 4.51516446747963 1 7.21916947499839 4.02521298309224 1 6.61095852079607 5.35205946687567 1 2.59249592920151 0.756284591960114 1 8.58163248547907 3.76779427699367 1 7.86164254606212 1.23425344739733 1 7.22459851512079 5.69192759004084 1 2.46391682231140 0.626697111247094 1 1.37666679614458 0.0850311192606557 1 6.99535329428774 5.22402041296117 1 4.10255509353404 0.0845494795236941 1 9.14754400713588 3.83800038341603 1 9.19417616894172 2.68752405465039 1 7.21993188858784 0.108525252131188 1 5.61112164928016 1.53003323224417 1 4.02501202704844 2.88388192100925 1 7.75454869096328 2.25550746659844 1 6.69549473855791 2.36673839888467 1 6.18849817990230 4.97836674652459 1 6.54263406218390 0.834598177291021 1 8.54443627754918 5.47850873429622 1 1.97961580331274 0.158062518938500 1 3.67309260569741 1.13227508530645 1 5.75572976460165 1.30828876313430 1 8.45160472860189 5.90751849062474 1 3.46373193769655 1.51690595784220 1 1.91395651414783 0.612317246772413 1 4.12656938065540 2.09322445393649 1 3.65772017039046 1.80838713249693 1 4.54395760030265 1.38858754767689 1 2.86266970800483 1.34954202841685 1 8.37374823952218 6.83156860507414 1 5.62707992632729 0.893689431466388 1 6.42610816769460 1.07534713660481 1 4.69353317658611 3.15086012845143 1 4.86173611501328 3.57464916591233 1 4.35769946480643 2.34450146003832 1 6.29762879066540 0.534351386077976 1 4.71155500188011 3.43210544532588 1 1.49995426186507 0.192006207383273 1 3.16576104712266 0.493379007110222 1 4.21408348419092 2.97014277918461 1 5.52248511695330 3.63263027130760 1 4.15244831176753 1.44597290703838 1 9.55986996363196 1.13832040773527 1 1.63276516895206 0.446783742774178 1 9.38532498107474 0.913169554364942 1
转自:
https://github.com/zhaozhiyong19890102/Python-Machine-Learning-Algorithm