08-人脸识别-FaceNet-classify.py代码阅读(说明见注释)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 | """An example of how to use your own dataset to train a classifier that recognizes people. """ # MIT License # # Copyright (c) 2016 David Sandberg # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # @ 调用格式: # @ # @ 训练模型记住人脸(不是训练网络,网络在这之前已经先训练好了)。 # @ ../lfw/ 是lfw数据集经过 mtcnn 截取以后的结果。否则会影响效果(去除数据集中的人脸外部干扰) # @ python classifier.py TRAIN ../lfw/ 20170511-185253/ train_20180419_2048.pkl # @ # @ 测试模型记住人脸的结果。(../data 是测试用的图的路径。) # @ python classifier.py CLASSIFY ../data/ 20170511-185253/ train_20180419_2048.pkl from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import numpy as np import argparse import facenet import os import sys import math import pickle from sklearn.svm import SVC # @ args内中参数见函数 parse_arguments def main(args): # @ 声明一个计算图,都这么写,没有就是默认一个。 with tf.Graph().as_default(): # @ 声明一个 Session with tf.Session() as sess: # @ Part I # @ 这部分是计算人脸的 embedding 特征。费时。 # @ # @ 加随机数seed,调用np.random.random()的结果都会相同。 np.random.seed(seed = args.seed) if args.use_split_dataset: dataset_tmp = facenet.get_dataset(args.data_dir) train_set, test_set = split_dataset(dataset_tmp, args.min_nrof_images_per_class, args.nrof_train_images_per_class) if (args.mode = = 'TRAIN' ): dataset = train_set elif (args.mode = = 'CLASSIFY' ): dataset = test_set else : dataset = facenet.get_dataset(args.data_dir) # Check that there are at least one training image per class # @ cls.image_paths 是每张图的路径,包含文件名。 for cls in dataset: assert ( len ( cls .image_paths)> 0 , 'There must be at least one image for each class in the dataset' ) # @ 分离出图片路径名paths,和类型labels(人脸所属人名) paths, labels = facenet.get_image_paths_and_labels(dataset) print ( 'Number of classes: %d' % len (dataset)) print ( 'Number of images: %d' % len (paths)) # Load the model # @ 这里加的 model 使用于生成人脸的 embedding 特征的网络。 # @ 这个网络是事先已经生成好的。 # @ 网络可以根据运行的平台,设计成不同大小。比如基于GoogleNet/AlexNet等 print ( 'Loading feature extraction model' ) facenet.load_model(args.model) # Get input and output tensors # @ TensorFlow的参数准备。embeddings 是网络的输出,是后续分类的输入。 images_placeholder = tf.get_default_graph().get_tensor_by_name( "input:0" ) embeddings = tf.get_default_graph().get_tensor_by_name( "embeddings:0" ) phase_train_placeholder = tf.get_default_graph().get_tensor_by_name( "phase_train:0" ) embedding_size = embeddings.get_shape()[ 1 ] # Run forward pass to calculate embeddings print ( 'Calculating features for images' ) nrof_images = len (paths) # @ 图片总数 nrof_batches_per_epoch = int (math.ceil( 1.0 * nrof_images / args.batch_size)) emb_array = np.zeros((nrof_images, embedding_size)) for i in range (nrof_batches_per_epoch): start_index = i * args.batch_size end_index = min ((i + 1 ) * args.batch_size, nrof_images) paths_batch = paths[start_index:end_index] images = facenet.load_data(paths_batch, False , False , args.image_size) feed_dict = { images_placeholder:images, phase_train_placeholder: False } emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict = feed_dict) # @ emb_array 是 embedding 结果。一个 embedding 有 18 维。 # @ 接下来就是用机器学习的方法分类。 classifier_filename_exp = os.path.expanduser(args.classifier_filename) # @ Part II 也较费时。 # @ 这部分是训练分类人脸的机器学习模型,这里使用的SVC,是SVM的一种。 # @ 若是 CLASSIFY ,则是加载训练结果,建立 SVC 分类器。 if (args.mode = = 'TRAIN' ): # Train classifier # @ SVC是SVM的一种Type,是用来的做分类的;同样还有SVR,是SVM的另一种Type,是用来的做回归的。 print ( 'Training classifier' ) model = SVC(kernel = 'linear' , probability = True ) model.fit(emb_array, labels) # @ 训练过程 # @ 训练结束,保存数据 # Create a list of class names class_names = [ cls .name.replace( '_' , ' ' ) for cls in dataset] # Saving classifier model with open (classifier_filename_exp, 'wb' ) as outfile: pickle.dump((model, class_names), outfile) print ( 'Saved classifier model to file "%s"' % classifier_filename_exp) elif (args.mode = = 'CLASSIFY' ): # Classify images print ( 'Testing classifier' ) # @ 加载数据,建立分类器 with open (classifier_filename_exp, 'rb' ) as infile: (model, class_names) = pickle.load(infile) print ( 'Loaded classifier model from file "%s"' % classifier_filename_exp) # @ 预测,标签结果应该是 one_hot 的。 predictions = model.predict_proba(emb_array) best_class_indices = np.argmax(predictions, axis = 1 ) # @ 输出每列最大的序号。 best_class_probabilities = predictions[np.arange( len (best_class_indices)), best_class_indices] for i in range ( len (best_class_indices)): print ( '%4d %s: %.3f' % (i, class_names[best_class_indices[i]], best_class_probabilities[i])) # @ 评估结果。labels 是测试集的实际结果,best_class_indices是预测结果。 accuracy = np.mean(np.equal(best_class_indices, labels)) print ( 'Accuracy: %.3f' % accuracy) # @ 将数据集分成训练集和测试集 def split_dataset(dataset, min_nrof_images_per_class, nrof_train_images_per_class): train_set = [] test_set = [] for cls in dataset: paths = cls .image_paths # Remove classes with less than min_nrof_images_per_class if len (paths)> = min_nrof_images_per_class: np.random.shuffle(paths) train_set.append(facenet.ImageClass( cls .name, paths[:nrof_train_images_per_class])) test_set.append(facenet.ImageClass( cls .name, paths[nrof_train_images_per_class:])) return train_set, test_set # @ 命令行参数,使用的系统库 argparse # @ ** 写法值得记住 ** def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument( 'mode' , type = str , choices = [ 'TRAIN' , 'CLASSIFY' ], help = 'Indicates if a new classifier should be trained or a classification ' + 'model should be used for classification' , default = 'CLASSIFY' ) parser.add_argument( 'data_dir' , type = str , help = 'Path to the data directory containing aligned LFW face patches.' ) parser.add_argument( 'model' , type = str , help = 'Could be either a directory containing the meta_file and ckpt_file or a model protobuf (.pb) file' ) parser.add_argument( 'classifier_filename' , help = 'Classifier model file name as a pickle (.pkl) file. ' + 'For training this is the output and for classification this is an input.' ) parser.add_argument( '--use_split_dataset' , help = 'Indicates that the dataset specified by data_dir should be split into a training and test set. ' + 'Otherwise a separate test set can be specified using the test_data_dir option.' , action = 'store_true' ) parser.add_argument( '--test_data_dir' , type = str , help = 'Path to the test data directory containing aligned images used for testing.' ) parser.add_argument( '--batch_size' , type = int , help = 'Number of images to process in a batch.' , default = 90 ) parser.add_argument( '--image_size' , type = int , help = 'Image size (height, width) in pixels.' , default = 160 ) parser.add_argument( '--seed' , type = int , help = 'Random seed.' , default = 666 ) parser.add_argument( '--min_nrof_images_per_class' , type = int , help = 'Only include classes with at least this number of images in the dataset' , default = 20 ) parser.add_argument( '--nrof_train_images_per_class' , type = int , help = 'Use this number of images from each class for training and the rest for testing' , default = 10 ) return parser.parse_args(argv) # @ 主函数 # @ sys.argv[1:] 就是命令行输入的 classify.py 后面的所有字符串,以空格分隔。 if __name__ = = '__main__' : main(parse_arguments(sys.argv[ 1 :])) |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 分享 3 个 .NET 开源的文件压缩处理库,助力快速实现文件压缩解压功能!
· Ollama——大语言模型本地部署的极速利器
· DeepSeek如何颠覆传统软件测试?测试工程师会被淘汰吗?