莫烦TensorFlow_06 plot可视化
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function = None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) # hang lie biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs x_data = np.linspace(-1,1,300)[:, np.newaxis] noise = np.random.normal(0, 0.05, x_data.shape) y_data = np.square(x_data) - 0.5 + noise #input layer 1 #hidden layer 10 #output layer 1 xs = tf.placeholder(tf.float32, [None, 1]) # 类似函数的定义 ys = tf.placeholder(tf.float32, [None, 1]) l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu) prediction = add_layer(l1, 10, 1, activation_function = None) loss = tf.reduce_mean( tf.reduce_sum( tf.square(ys - prediction), reduction_indices=[1] ) ) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) #可视化 fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.scatter(x_data, y_data) plt.ion() # not frozen plt.show() # block=False for i in range(1000): sess.run(train_step, feed_dict={xs:x_data, ys:y_data}) # 类似函数变量的输入 if i % 50 == 0: #print(sess.run(loss, feed_dict={xs:x_data, ys:y_data})) try: ax.lines.remove(lines[0]) except Exception: pass prediction_value = sess.run(prediction,feed_dict={xs:x_data}) lines = ax.plot(x_data, prediction_value, 'r-', lw=5) plt.pause(0.1)