莫烦TensorFlow_05 add_layer
import tensorflow as tf import numpy as np def add_layer(inputs, in_size, out_size, activation_function = None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) # hang lie biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs x_data = np.linspace(-1,1,300)[:, np.newaxis] # 一列;[np.newaxis,:] 一行 noise = np.random.normal(0, 0.05, x_data.shape) y_data = np.square(x_data) - 0.5 + noise #input layer 1 #hidden layer 10 #output layer 1 xs = tf.placeholder(tf.float32, [None, 1]) # 行数不固定,列数是1 ys = tf.placeholder(tf.float32, [None, 1]) l1 = add_layer(xs, 1, 10, activation_function = tf.nn.relu) prediction = add_layer(l1, 10, 1, activation_function = None) loss = tf.reduce_mean( tf.reduce_sum( tf.square(ys - prediction), reduction_indices=[1] ) ) train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) for i in range(1000): sess.run(train_step, feed_dict={xs:x_data, ys:y_data}) if i % 50 == 0: print(sess.run(loss, feed_dict={xs:x_data, ys:y_data} ) )