lstm-思想2

LSTM 网络

Long Short Term 网络—— 一般就叫做 LSTM ——是一种 RNN 特殊的类型,可以学习长期依赖信息。LSTM 由 Hochreiter & Schmidhuber (1997) 提出,并在近期被 Alex Graves 进行了改良和推广。在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用。

LSTM 通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是 LSTM 的默认行为,而非需要付出很大代价才能获得的能力!

所有 RNN 都具有一种重复神经网络模块的链式的形式。在标准的 RNN 中,这个重复的模块只有一个非常简单的结构,例如一个 tanh 层。

[译] 理解 LSTM 网络

标准 RNN 中的重复模块包含单一的层

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于 单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

[译] 理解 LSTM 网络

LSTM 中的重复模块包含四个交互的层

不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

[译] 理解 LSTM 网络
LSTM 中的图标

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise 的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

LSTM 的核心思想

LSTM 的关键就是细胞状态,水平线在图上方贯穿运行。细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

[译] 理解 LSTM 网络

Paste_Image.png

LSTM 有通过精心设计的称作为“门”的结构来去除或者增加信息到细胞状态的能力。门是一种让信息选择式通过的方法。他们包含一个 sigmoid 神经网络层和一个 pointwise 乘法操作。

[译] 理解 LSTM 网络

Paste_Image.png

Sigmoid 层输出 0 到 1 之间的数值,描述每个部分有多少量可以通过。0 代表“不许任何量通过”,1 就指“允许任意量通过”!

LSTM 拥有三个门,来保护和控制细胞状态。

逐步理解 LSTM

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为 忘记门层 完成。该门会读取h_{t-1}和x_t,输出一个在 0 到 1 之间的数值给每个在细胞状态C_{t-1}中的数字。1 表示“完全保留”,0 表示“完全舍弃”。

让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前 主语 的类别,因此正确的 代词 可以被选择出来。当我们看到新的 代词 ,我们希望忘记旧的 代词

[译] 理解 LSTM 网络
决定丢弃信息

下一步是确定什么样的新信息被存放在细胞状态中。这里包含两个部分。第一,sigmoid 层称 “输入门层” 决定什么值我们将要更新。然后,一个 tanh 层创建一个新的候选值向量,\tilde{C}_t,会被加入到状态中。下一步,我们会讲这两个信息来产生对状态的更新。

在我们语言模型的例子中,我们希望增加新的代词的类别到细胞状态中,来替代旧的需要忘记的代词。

[译] 理解 LSTM 网络
确定更新的信息

现在是更新旧细胞状态的时间了,C_{t-1}更新为C_t。前面的步骤已经决定了将会做什么,我们现在就是实际去完成。

我们把旧状态与f_t相乘,丢弃掉我们确定需要丢弃的信息。接着加上i_t * \tilde{C}_t。这就是新的候选值,根据我们决定更新每个状态的程度进行变化。

在语言模型的例子中,这就是我们实际根据前面确定的目标,丢弃旧代词的类别信息并添加新的信息的地方。

[译] 理解 LSTM 网络
更新细胞状态

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid 层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid 门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

在语言模型的例子中,因为他就看到了一个 代词 ,可能需要输出与一个 动词 相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

[译] 理解 LSTM 网络
输出信息

LSTM 的变体

我们到目前为止都还在介绍正常的 LSTM。但是不是所有的 LSTM 都长成一个样子的。实际上,几乎所有包含 LSTM 的论文都采用了微小的变体。差异非常小,但是也值得拿出来讲一下。

其中一个流形的 LSTM 变体,就是由 Gers & Schmidhuber (2000) 提出的,增加了 “peephole connection”。是说,我们让 门层 也会接受细胞状态的输入。

[译] 理解 LSTM 网络
peephole 连接

上面的图例中,我们增加了 peephole 到每个门上,但是许多论文会加入部分的 peephole 而非所有都加。

另一个变体是通过使用 coupled 忘记和输入门。不同于之前是分开确定什么忘记和需要添加什么新的信息,这里是一同做出决定。我们仅仅会当我们将要输入在当前位置时忘记。我们仅仅输入新的值到那些我们已经忘记旧的信息的那些状态 。

[译] 理解 LSTM 网络

coupled 忘记门和输入门

另一个改动较大的变体是 Gated Recurrent Unit (GRU),这是由 Cho, et al. (2014) 提出。它将忘记门和输入门合成了一个单一的 更新门。同样还混合了细胞状态和隐藏状态,和其他一些改动。最终的模型比标准的 LSTM 模型要简单,也是非常流行的变体。

[译] 理解 LSTM 网络
GRU

这里只是部分流行的 LSTM 变体。当然还有很多其他的,如 Yao, et al. (2015) 提出的 Depth Gated RNN。还有用一些完全不同的观点来解决长期依赖的问题,如 Koutnik, et al. (2014) 提出的 Clockwork RNN。

要问哪个变体是最好的?其中的差异性真的重要吗? Greff, et al. (2015) 给出了流行变体的比较,结论是他们基本上是一样的。 Jozefowicz, et al. (2015) 则在超过 1 万中 RNN 架构上进行了测试,发现一些架构在某些任务上也取得了比 LSTM 更好的结果。

posted on 2016-03-09 15:40  学渣的成长之路  阅读(2213)  评论(0编辑  收藏  举报

导航