Loading [Contrib]/a11y/accessibility-menu.js

alex_bn_lee

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

【338】Pandas.DataFrame

Ref: Pandas Tutorial: DataFrames in Python

Ref: pandas.DataFrame

Ref: Pandas:DataFrame对象的基础操作


Ref: Creating, reading, and writing reference

  • pandas.DataFrame()
  • pandas.Series()
  • pandas.read_csv()
  • pandas.DataFrame.shape
  • pandas.DataFrame.head
  • pandas.read_excel()
  • pandas.to_csv()
  • pandas.to_excel()

Ref: Indexing, selecting, assigning reference

  • pandas.iloc(): 类似于Excel中的Cell函数,将其看做Matrix
  • pandas.loc()

一、基本概念

class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)
Parameters:

data : 数据主体部分,numpy ndarray (structured or homogeneous), dict, or DataFrame

Dict can contain Series, arrays, constants, or list-like objects

Changed in version 0.23.0: If data is a dict, argument order is maintained for Python 3.6 and later.

index : 行名称,默认 0, 1, 2, ..., n, Index or array-like

Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided

columns : 列名称,默认 0, 1, 2, ..., n, Index or array-like

Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, …, n) if no column labels are provided

dtype : 数据类型,dtype, default None

Data type to force. Only a single dtype is allowed. If None, infer

copy : boolean, default False

Copy data from inputs. Only affects DataFrame / 2d ndarray input

 

data[1:,0] means the first column, data[0,1:] means the first row.

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> import numpy as np
>>> import pandas as pd
>>> data = np.array([
    ['','Col1','Col2'],
    ['Row1',1,2],
    ['Row2',3,4]
    ])
>>> print(pd.DataFrame(data=data[1:,1:],
               index=data[1:,0],
               columns=data[0,1:]))
     Col1 Col2
Row1    1    2
Row2    3    4

or

1
2
3
4
5
6
7
8
9
>>> data = np.array([
    [1,2],
    [3,4]])
>>> print(pd.DataFrame(data=data,
               index=['Row1','Row2'],
               columns=['Col1','Col2']))
      Col1  Col2
Row1     1     2
Row2     3     4

Ref: pandas dataframe.apply() 实现对某一行/列进行处理获得一个新行/新列

Ref: 在pandas中遍历DataFrame行

Ref: pandas.DataFrame.apply


二、相关方法:

DataFrame.apply(func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None, args=(), **kwds)

Apply a funciton along an axis of the DataFrame. (类似Excel中对一列或者一行数据进行摸个函数的处理)

Objects passed to the function are Series objects whose index is either the DataFrame's index (axis=0) or the DataFrame's columns (axis=1).

Ref: pandas.Series.value_counts

Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)

Returns object containing counts of unique values.

The resulting object will be in desceding order so that the first element is the most frequent-occurring element. Excludes NA values by default.

DataFrame.read_csv():  可以将 Str 通过 StringIO() 转为文件缓存,可以直接用此方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> from io import StringIO
>>> a = '''
A, B, C
1,2,3
4,5,6
7,8,9
'''
>>> a
'\nA, B, C\n1,2,3\n4,5,6\n7,8,9\n'
>>> data = pd.read_csv(StringIO(a))
>>> data
   A   B   C
0  1   2   3
1  4   5   6
2  7   8   9

 

 

 

 

 

 

 

 

 

 

 

posted on   McDelfino  阅读(216)  评论(0编辑  收藏  举报

编辑推荐:
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2014-11-13 【153】电脑耗材购买&报销
2011-11-13 【C015】Python数据类型 - 序列
2011-11-13 【C014】Python数据类型 - 数值类型
2011-11-13 【C013】ArcPy - 入门学习
点击右上角即可分享
微信分享提示