alex_bn_lee

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

[1059] Operations of None in pandas

In pandas, handling None values (which are represented as NaN in DataFrames) is a common task. Here are some ways to deal with them:

Filtering Rows

  1. Filter Rows with None Values:

    import pandas as pd
    # Sample DataFrame
    df = pd.DataFrame({
    'A': [1, 2, 3, 4],
    'B': [None, 5, None, 7]
    })
    # Filter rows where column 'B' has None values
    rows_with_none = df[df['B'].isnull()]
    print(rows_with_none)
  2. Filter Rows without None Values:

    # Filter rows where column 'B' does not have None values
    rows_without_none = df[df['B'].notnull()]
    print(rows_without_none)

Other Operations

  1. Fill None Values: You can fill None values with a specific value using fillna():

    # Fill None values with a specific value, e.g., 0
    df_filled = df.fillna(0)
    print(df_filled)
  2. Drop Rows with None Values: You can drop rows that contain None values using dropna():

    # Drop rows where any column has None values
    df_dropped = df.dropna()
    print(df_dropped)
  3. Replace None Values: You can replace None values with another value using replace():

    # Replace None values with a specific value, e.g., -1
    df_replaced = df.replace({None: -1})
    print(df_replaced)
  4. Interpolate None Values: You can interpolate None values using interpolate():

    # Interpolate None values
    df_interpolated = df.interpolate()
    print(df_interpolated)

These operations should help you manage None values effectively in your pandas DataFrame. If you have any more questions or need further assistance, feel free to ask!

 

posted on   McDelfino  阅读(4)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示