[1058] Integrate points within the same polygons as the centroid (Points, Cadastre Polygons)
The function:
def integration_points_within_polyogns(points_gdf, polygons_gdf): """_summary_ Args: points_gdf (geodataframe): Point based geodataframe polygons_gdf (geodataframe): Polygon based geodataframe Returns: joined_gdf (geodataframe): Matched records and replace the latlon information from the polygons unjoined_gdf (geodataframe): Unmatched records """ # Spatial join to find points within polygons joined_gdf = gpd.sjoin(points_gdf, polygons_gdf, how="inner", predicate="intersects") # Calculate the centroid (representative point) of the polygon polygons_gdf['centroid'] = polygons_gdf["geometry"].apply(lambda x: x.centroid if x.contains(x.centroid) else x.representative_point()) # Update points to the centroid (representative point) of the polygon # .values: only update the corresponding values not based on the index joined_gdf['geometry'] = polygons_gdf.loc[joined_gdf.index_right, 'centroid'].values joined_gdf = joined_gdf.drop("index_right", axis=1) # calculate the difference of two RangeIndex data unjoined_gdf = points_gdf.reindex(points_gdf.index.difference(joined_gdf.index)) return joined_gdf.copy(), unjoined_gdf.copy()
To integrate points within a specific polygon and set the centroid of the polygon as the new location for those points, you can use the geopandas
library in Python. Here’s a step-by-step guide:
-
Import necessary libraries:
import geopandas as gpd from shapely.geometry import Point, Polygon -
Create sample GeoDataFrames:
# Sample point-based GeoDataFrame points_data = {'geometry': [Point(1, 1), Point(2, 2), Point(3, 3)]} points_gdf = gpd.GeoDataFrame(points_data, crs="EPSG:4326") # Sample polygon-based GeoDataFrame polygons_data = {'geometry': [Polygon([(0, 0), (4, 0), (4, 4), (0, 4)])]} polygons_gdf = gpd.GeoDataFrame(polygons_data, crs="EPSG:4326") -
Find points within polygons:
# Spatial join to find points within polygons joined_gdf = gpd.sjoin(points_gdf, polygons_gdf, how="inner", op="within") -
Calculate the centroid (representative point) of the polygon:
# Calculate the centroid (representative point) of the polygon # polygons_gdf['centroid'] = polygons_gdf.centroid polygons_gdf['centroid'] = polygons_gdf["geometry"].apply(lambda x: x.centroid if x.contains(x.centroid) else x.representative_point()) -
Update points to the centroid of the polygon:
# Update points to the centroid of the polygon joined_gdf['geometry'] = polygons_gdf.loc[joined_gdf.index_right, 'centroid'].values -
Result:
print(joined_gdf)
Here’s the complete code together:
import geopandas as gpd from shapely.geometry import Point, Polygon # Sample point-based GeoDataFrame points_data = {'geometry': [Point(1, 1), Point(2, 2), Point(3, 3), Point(4, 4), Point(5, 5), Point(6, 6), Point(14, 10), Point(13, 13)]} points_gdf = gpd.GeoDataFrame(points_data) # Sample polygon-based GeoDataFrame polygons_data = {'geometry': [Polygon([(1, 0), (3, 0), (3, 3), (0, 3), (0, 1), (1, 1.5), (1, 2), (2, 2), (2, 1), (1.5, 1)]), Polygon([(10, 10), (14, 10), (14, 14), (10, 14)])]} polygons_gdf = gpd.GeoDataFrame(polygons_data) # Spatial join to find points within polygons joined_gdf = gpd.sjoin(points_gdf, polygons_gdf, how="inner", predicate="intersects") # Calculate the centroid (representative point) of the polygon polygons_gdf['centroid'] = polygons_gdf["geometry"].apply(lambda x: x.centroid if x.contains(x.centroid) else x.representative_point()) # Update points to the centroid (representative point) of the polygon # .values: only update the corresponding values not based on the index joined_gdf['geometry'] = polygons_gdf.loc[joined_gdf.index_right, 'centroid'].values # calculate the difference of two RangeIndex data unjoined_gdf = points_gdf.reindex(points_gdf.index.difference(joined_gdf.index)) print(joined_gdf) print(unjoined_gdf)
This script will update the points within the polygon to the centroid of that polygon. If you have multiple polygons and points, you might need to adjust the logic to handle each polygon separately.
Feel free to ask if you have any more questions or need further assistance!
To get the remainder of a RangeIndex
“A” after removing the elements of another RangeIndex
“B” that it contains, you can use the difference
method in pandas. Here’s how you can do it:
-
Import pandas:
import pandas as pd -
Create the RangeIndex objects:
A = pd.RangeIndex(start=0, stop=10, step=1) B = pd.RangeIndex(start=3, stop=6, step=1) -
Get the remainder of A after removing B:
remainder = A.difference(B) -
Print the result:
print(remainder)
Here’s the complete code together:
import pandas as pd # Create RangeIndex objects A = pd.RangeIndex(start=0, stop=10, step=1) B = pd.RangeIndex(start=3, stop=6, step=1) # Get the remainder of A after removing B remainder = A.difference(B) print(remainder)
This will output:
RangeIndex(start=0, stop=3, step=1) RangeIndex(start=6, stop=10, step=1)
This means that the elements 3, 4, and 5 have been removed from A
, leaving the remainder as RangeIndex(start=0, stop=3, step=1)
and RangeIndex(start=6, stop=10, step=1)
.
Feel free to ask if you have any more questions or need further assistance!
To use a RangeIndex
for a DataFrame in pandas, you can either create a DataFrame with a RangeIndex
by default or explicitly set a RangeIndex
for an existing DataFrame. Here are a few methods to achieve this:
Method 1: Default RangeIndex
When you create a DataFrame without specifying an index, pandas automatically uses a RangeIndex
starting from 0 with steps of 1.
import pandas as pd # Sample data for DataFrame data = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} # Create the DataFrame without specifying an index df = pd.DataFrame(data) # The default index of the DataFrame is a RangeIndex print(df.index)
Method 2: Using pd.RangeIndex()
You can explicitly create a RangeIndex
and set it as the index of a DataFrame.
import pandas as pd # Sample data for DataFrame data = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} # Create the DataFrame df = pd.DataFrame(data) # Create a RangeIndex range_index = pd.RangeIndex(start=0, stop=len(df), step=1) # Set the RangeIndex as the index of the DataFrame df.index = range_index print(df.index)
Method 3: Using reset_index()
If you have a DataFrame with an existing index and you want to reset it to a RangeIndex
, you can use the reset_index()
method.
import pandas as pd # DataFrame with an existing index df = pd.DataFrame({'col1': [10, 20], 'col2': [30, 40]}, index=['a', 'b']) # Reset the DataFrame to a RangeIndex df_reset = df.reset_index(drop=True) print(df_reset.index)
Method 4: Using reindex()
You can also use the reindex()
method to set a RangeIndex
.
import pandas as pd # Sample data for DataFrame data = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} # Create the DataFrame df = pd.DataFrame(data) # Create a RangeIndex range_index = pd.RangeIndex(start=0, stop=len(df), step=1) # Reindex the DataFrame df_reindexed = df.reindex(range_index) print(df_reindexed.index)
These methods will help you work with RangeIndex
in your DataFrame, providing flexibility depending on your specific needs. If you have any more questions or need further assistance, feel free to ask!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
2023-09-05 【876】Top 50 matplotlib Visualizations – The Master Plots (with full python code)
2023-09-05 【875】numpy复制并扩充维度
2021-09-05 【657】深度学习模型预测单张图片
2021-09-05 【656】SegNet 相关说明