[1042] Stitch multiple images based on overlay areas in Python
To stitch multiple images into one big image based on their overlay areas in Python, you can use the OpenCV library. Here’s a step-by-step guide:
-
Install Required Libraries:
pip install opencv-python numpy -
Stitch Images:
import cv2 import numpy as np # Load the images img1 = cv2.imread('image1.jpg') img2 = cv2.imread('image2.jpg') # Create a stitcher object stitcher = cv2.Stitcher_create() # Perform the stitching process (status, stitched) = stitcher.stitch([img1, img2]) if status == cv2.Stitcher_OK: print("Stitching successful!") cv2.imwrite('stitched_image.jpg', stitched) else: print("Stitching failed:", status)
In this example:
cv2.imread
loads the images.cv2.Stitcher_create
creates a stitcher object.stitcher.stitch
performs the stitching process.
This code will stitch the images together based on their overlapping areas. You can add more images to the list passed to the stitch
method if needed.
For more complex stitching tasks, you might need to detect features and match them manually. Here’s a more detailed approach:
- Detect Features and Match Them:
import cv2 import numpy as np # Load the images img1 = cv2.imread('image1.jpg') img2 = cv2.imread('image2.jpg') # Convert images to grayscale gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) # Detect ORB features and compute descriptors orb = cv2.ORB_create() keypoints1, descriptors1 = orb.detectAndCompute(gray1, None) keypoints2, descriptors2 = orb.detectAndCompute(gray2, None) # Match features bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = bf.match(descriptors1, descriptors2) matches = sorted(matches, key=lambda x: x.distance) # Draw matches (optional) img_matches = cv2.drawMatches(img1, keypoints1, img2, keypoints2, matches[:10], None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) cv2.imwrite('matches.jpg', img_matches) # Extract location of good matches points1 = np.zeros((len(matches), 2), dtype=np.float32) points2 = np.zeros((len(matches), 2), dtype=np.float32) for i, match in enumerate(matches): points1[i, :] = keypoints1[match.queryIdx].pt points2[i, :] = keypoints2[match.trainIdx].pt # Find homography h, mask = cv2.findHomography(points2, points1, cv2.RANSAC) # Use homography to warp images height, width, channels = img1.shape img2_warped = cv2.warpPerspective(img2, h, (width, height)) # Combine images stitched = np.maximum(img1, img2_warped) cv2.imwrite('stitched_image.jpg', stitched)
This approach involves:
- Detecting features using ORB.
- Matching features between images.
- Finding the homography matrix.
- Warping one image to align with the other.
- Combining the images.
This method provides more control and can handle more complex stitching scenarios12.
Are you working on a specific project that requires image stitching? Let me know if you need more detailed steps or have any questions!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
2023-08-16 【870】Previous Address
2016-08-16 【211】win10快捷键大全