alex_bn_lee

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

[1042] Stitch multiple images based on overlay areas in Python

To stitch multiple images into one big image based on their overlay areas in Python, you can use the OpenCV library. Here’s a step-by-step guide:

  1. Install Required Libraries:

    pip install opencv-python numpy
  2. Stitch Images:

    import cv2
    import numpy as np
    # Load the images
    img1 = cv2.imread('image1.jpg')
    img2 = cv2.imread('image2.jpg')
    # Create a stitcher object
    stitcher = cv2.Stitcher_create()
    # Perform the stitching process
    (status, stitched) = stitcher.stitch([img1, img2])
    if status == cv2.Stitcher_OK:
    print("Stitching successful!")
    cv2.imwrite('stitched_image.jpg', stitched)
    else:
    print("Stitching failed:", status)

In this example:

  • cv2.imread loads the images.
  • cv2.Stitcher_create creates a stitcher object.
  • stitcher.stitch performs the stitching process.

This code will stitch the images together based on their overlapping areas. You can add more images to the list passed to the stitch method if needed.

For more complex stitching tasks, you might need to detect features and match them manually. Here’s a more detailed approach:

  1. Detect Features and Match Them:
    import cv2
    import numpy as np
    # Load the images
    img1 = cv2.imread('image1.jpg')
    img2 = cv2.imread('image2.jpg')
    # Convert images to grayscale
    gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
    gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
    # Detect ORB features and compute descriptors
    orb = cv2.ORB_create()
    keypoints1, descriptors1 = orb.detectAndCompute(gray1, None)
    keypoints2, descriptors2 = orb.detectAndCompute(gray2, None)
    # Match features
    bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
    matches = bf.match(descriptors1, descriptors2)
    matches = sorted(matches, key=lambda x: x.distance)
    # Draw matches (optional)
    img_matches = cv2.drawMatches(img1, keypoints1, img2, keypoints2, matches[:10], None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
    cv2.imwrite('matches.jpg', img_matches)
    # Extract location of good matches
    points1 = np.zeros((len(matches), 2), dtype=np.float32)
    points2 = np.zeros((len(matches), 2), dtype=np.float32)
    for i, match in enumerate(matches):
    points1[i, :] = keypoints1[match.queryIdx].pt
    points2[i, :] = keypoints2[match.trainIdx].pt
    # Find homography
    h, mask = cv2.findHomography(points2, points1, cv2.RANSAC)
    # Use homography to warp images
    height, width, channels = img1.shape
    img2_warped = cv2.warpPerspective(img2, h, (width, height))
    # Combine images
    stitched = np.maximum(img1, img2_warped)
    cv2.imwrite('stitched_image.jpg', stitched)

This approach involves:

  • Detecting features using ORB.
  • Matching features between images.
  • Finding the homography matrix.
  • Warping one image to align with the other.
  • Combining the images.

This method provides more control and can handle more complex stitching scenarios12.

Are you working on a specific project that requires image stitching? Let me know if you need more detailed steps or have any questions!

1: PyImageSearch 2: GeeksforGeeks

 

posted on   McDelfino  阅读(19)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2023-08-16 【870】Previous Address
2016-08-16 【211】win10快捷键大全
点击右上角即可分享
微信分享提示