alex_bn_lee

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

[906] Replace NaN (Not-a-Number) values with 'Null' in Pandas

In Pandas, you can replace NaN (Not-a-Number) values in a DataFrame with None (Python's None type) or np.nan (NumPy's NaN) values. Here's how you can replace NaN values with None:

import pandas as pd
import numpy as np
# Create a sample DataFrame with NaN values
data = {'A': [1, np.nan, 3, np.nan, 5]}
df = pd.DataFrame(data)
# Replace NaN with None
df = df.where(pd.notna(df), None)
print(df)

This code replaces NaN values with None using the where method in Pandas.

If you want to replace NaN values with np.nan instead, you can do it like this:

import pandas as pd
import numpy as np
# Create a sample DataFrame with NaN values
data = {'A': [1, np.nan, 3, np.nan, 5]}
df = pd.DataFrame(data)
# Replace NaN with np.nan
df = df.fillna(np.nan)
print(df)

In this example, we're using the fillna method to replace NaN values with np.nan.

The choice between None and np.nan depends on your specific use case. If you want to work with NaN values in a more numerical context, using np.nan is typically a better choice. If you prefer to treat NaN values as missing data in a more general sense, using None may be more appropriate.

posted on   McDelfino  阅读(18)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2022-10-17 【753】Transformer模型
2020-10-17 【492】状态转移:初识马尔科夫链
2019-10-17 【443】Tweets Analysis Q&A
2016-10-17 【229】Raster Calculator - 栅格计算器
点击右上角即可分享
微信分享提示