[896] Replace values in a DataFrame
You can replace values in a Pandas DataFrame using the replace()
method or by directly assigning new values to specific DataFrame elements. Here's how to do both:
Using replace()
Method:
The replace()
method allows you to replace specific values with new values throughout the DataFrame. You can specify the values to be replaced and their corresponding replacement values.
import pandas as pd # Create a sample DataFrame data = {'A': [1, 2, 3, 4, 5], 'B': ['apple', 'banana', 'cherry', 'date', 'elderberry']} df = pd.DataFrame(data) # Replace specific values in column 'A' df['A'] = df['A'].replace({2: 20, 4: 40}) # Replace specific values in column 'B' df['B'] = df['B'].replace({'banana': 'pear', 'cherry': 'grape'}) print(df)
In this example, we replaced the values 2 with 20 and 4 with 40 in column 'A', and 'banana' with 'pear' and 'cherry' with 'grape' in column 'B'.
Direct Assignment:
You can also directly assign new values to specific DataFrame elements using indexing.
import pandas as pd # Create a sample DataFrame data = {'A': [1, 2, 3, 4, 5], 'B': ['apple', 'banana', 'cherry', 'date', 'elderberry']} df = pd.DataFrame(data) # Replace values using direct assignment df['A'][df['A'] == 2] = 20 df['A'][df['A'] == 4] = 40 df['B'][df['B'] == 'banana'] = 'pear' df['B'][df['B'] == 'cherry'] = 'grape' print(df)
In this example, we directly replaced values using conditional indexing.
Both methods will yield the same result, and you can choose the one that best suits your needs and coding style.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
2022-10-10 【748】R语言相关材料
2019-10-10 【441】JSON format
2012-10-10 【084】◀▶ CSDN中的博客(VBA)