alex_bn_lee

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

[896] Replace values in a DataFrame

You can replace values in a Pandas DataFrame using the replace() method or by directly assigning new values to specific DataFrame elements. Here's how to do both:

Using replace() Method:

The replace() method allows you to replace specific values with new values throughout the DataFrame. You can specify the values to be replaced and their corresponding replacement values.

import pandas as pd
# Create a sample DataFrame
data = {'A': [1, 2, 3, 4, 5],
'B': ['apple', 'banana', 'cherry', 'date', 'elderberry']}
df = pd.DataFrame(data)
# Replace specific values in column 'A'
df['A'] = df['A'].replace({2: 20, 4: 40})
# Replace specific values in column 'B'
df['B'] = df['B'].replace({'banana': 'pear', 'cherry': 'grape'})
print(df)

In this example, we replaced the values 2 with 20 and 4 with 40 in column 'A', and 'banana' with 'pear' and 'cherry' with 'grape' in column 'B'.

Direct Assignment:

You can also directly assign new values to specific DataFrame elements using indexing.

import pandas as pd
# Create a sample DataFrame
data = {'A': [1, 2, 3, 4, 5],
'B': ['apple', 'banana', 'cherry', 'date', 'elderberry']}
df = pd.DataFrame(data)
# Replace values using direct assignment
df['A'][df['A'] == 2] = 20
df['A'][df['A'] == 4] = 40
df['B'][df['B'] == 'banana'] = 'pear'
df['B'][df['B'] == 'cherry'] = 'grape'
print(df)

In this example, we directly replaced values using conditional indexing.

Both methods will yield the same result, and you can choose the one that best suits your needs and coding style.

posted on   McDelfino  阅读(6)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2022-10-10 【748】R语言相关材料
2019-10-10 【441】JSON format
2012-10-10 【084】◀▶ CSDN中的博客(VBA)
点击右上角即可分享
微信分享提示