【814】Static hotspot analysis and emerging hotspot analysis based on the R library of sfdep
Ref: Emerging Hot Spot Analysis
Ref:
Ref:
Static hotspot analysis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | library (tidyverse) library (sf) library (openxlsx) library (ggplot2) library (tmap) tmap_mode ( "view" ) library (sfhotspot) # Set default work directory setwd ( "/Users/libingnan/Documents/09-Samsung/12-Polygon-based emerging hotspot analysis" ) hist <- read.xlsx ( "epiwatch_monkeypox.xlsx" ) %>% mutate (PubDate = as.Date (`insert-timestamp`, origin = "1899-12-30" )) %>% # filter(PubDate >= as.Date("2020-01-01")) %>% mutate (Longitude = as.numeric (long), Latitude = as.numeric (lat)) %>% drop_na (Longitude, Latitude) %>% # filter(diseases == "covid19") %>% # line below removes diseases with less than 5 occurrences # group_by(diseases) %>% filter(n() >=5) %>% ungroup() %>% #drop_na(diseases) %>% st_as_sf (coords = c ( "Longitude" , "Latitude" ), crs = 4326) %>% st_transform (3857) results <- hotspot_classify (data = hist, time = PubDate, period = "1 week" , cell_size = 500000, # 500 km #cell_size = 200000, # 200 km quiet = F, params = hotspot_classify_params ( nb_dist = 0.1) # default is to use points outside of cell. # changed to minimum distance to reduce confusion ) #autoplot(results) tm_shape (results, name = "Hotspot Detection" ) + tm_polygons ( "hotspot_category" , title = "Hotspot Category" , palette = c ( "persistent hotspot" = "red" , "emerging hotspot" = "orange" , "intermittent hotspot" = "yellow" , "former hotspot" = "darkgreen" , "no pattern" = NA ), alpha = 0.7, lwd = 0.8) + tm_shape (hist, name = "Reports" ) + tm_dots (jitter=0.1) |
结果显示:
Emerging hotspot analysis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | library (tidyverse) library (sf) library (openxlsx) library (ggplot2) library (tmap) tmap_mode ( "view" ) library (sfhotspot) library (sfdep) library (dplyr) # get directories of files df_fp <- system.file ( "extdata" , "bos-ecometric.csv" , package = "sfdep" ) geo_fp <- system.file ( "extdata" , "bos-ecometric.geojson" , package = "sfdep" ) # read in data df <- readr:: read_csv (df_fp, col_types = "ccidD" ) geo <- sf:: read_sf (geo_fp) # Create spacetime object called `bos` bos <- spacetime (df, geo, .loc_col = ".region_id" , .time_col = "time_period" ) # conduct EHSA ehsa <- emerging_hotspot_analysis ( x = bos, .var = "value" , k = 1, nsim = 9 ) # should put geo in the first place, otherwise it will triger the projection error geo_ehsa <- merge (geo, ehsa, by.x= ".region_id" , by.y= "location" ) # tm_shape: Specify the shape object # tm_polygons: Draw polygons # "clssification" is a column of hotspot_results tm_shape (geo_ehsa, name = "Hotspot Detection" ) + tm_polygons ( "classification" , title = "Hotspot Category" , palette = c ( "no pattern detected" = "#4576b5" ), alpha = 0.7, lwd = 0.8) |
结果显示:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
2012-03-10 【020】在 VS2010 中添加配置文件
2012-03-10 【019】SQL 基础学习