【716】Keras实现多输入
代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # compile the model using mean absolute percentage error as our loss, # implying that we seek to minimize the absolute percentage difference # between our price *predictions* and the *actual prices* opt = Adam(lr = 1e - 3 , decay = 1e - 3 / 200 ) model. compile (loss = "mean_absolute_percentage_error" , optimizer = opt) # train the model print ( "[INFO] training model..." ) model.fit( x = [trainAttrX, trainImagesX], y = trainY, validation_data = ([testAttrX, testImagesX], testY), epochs = 200 , batch_size = 8 ) # make predictions on the testing data print ( "[INFO] predicting house prices..." ) preds = model.predict([testAttrX, testImagesX]) |
分类:
AI Related
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
2021-05-31 【569】LaTex, arrows over letters
2021-05-31 【568】review
2021-05-31 【567】Convert LaTex to Word Using Pandoc
2012-05-31 【043】光盘库编码