【656】SegNet 相关说明
代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | from keras import Model, layers from keras.layers import Input , Conv2D, BatchNormalization, Activation, Reshape, MaxPooling2D, UpSampling2D def segnet(pretrained_weights = None , input_size = ( 512 , 512 , 3 ), classNum = 2 , learning_rate = 1e - 5 ): inputs = Input (input_size) #encode #第一层 64,64 conv1 = BatchNormalization()( Conv2D( 64 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(inputs)) conv1 = BatchNormalization()( Conv2D( 64 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv1)) pool1 = MaxPooling2D(pool_size = ( 2 , 2 ))(conv1) #第二层 128,128 conv2 = BatchNormalization()( Conv2D( 128 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(pool1)) conv2 = BatchNormalization()( Conv2D( 128 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv2)) pool2 = MaxPooling2D(pool_size = ( 2 , 2 ))(conv2) #第三层 256,256,256 conv3 = BatchNormalization()( Conv2D( 256 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(pool2)) conv3 = BatchNormalization()( Conv2D( 256 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv3)) conv3 = BatchNormalization()( Conv2D( 256 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv3)) pool3 = MaxPooling2D(pool_size = ( 2 , 2 ))(conv3) #第四层 512,512,512 conv4 = BatchNormalization()( Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(pool3)) conv4 = BatchNormalization()( Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv4)) conv4 = BatchNormalization()( Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv4)) pool4 = MaxPooling2D(pool_size = ( 2 , 2 ))(conv4) #第五层 512,512,512 conv5 = BatchNormalization()( Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(pool4)) conv5 = BatchNormalization()( Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv5)) conv5 = BatchNormalization()( Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv5)) pool5 = MaxPooling2D(pool_size = ( 2 , 2 ))(conv5) #decode #上采样 up1 = UpSampling2D(size = ( 2 , 2 ))(pool5) #第六层 512,512,512 conv6 = BatchNormalization()( Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(up1)) conv6 = BatchNormalization()( Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv6)) conv6 = BatchNormalization()( Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv6)) up2 = UpSampling2D(size = ( 2 , 2 ))(conv6) #第七层 512,512,512 conv7 = BatchNormalization()( Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(up2)) conv7 = BatchNormalization()( Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv7)) conv7 = BatchNormalization()( Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv7)) up3 = UpSampling2D(size = ( 2 , 2 ))(conv7) #第八层 256,256,256 conv8 = BatchNormalization()( Conv2D( 256 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(up3)) conv8 = BatchNormalization()( Conv2D( 256 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv8)) conv8 = BatchNormalization()( Conv2D( 256 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv8)) up4 = UpSampling2D(size = ( 2 , 2 ))(conv8) # 第八层 256,256,256 conv9 = BatchNormalization()( Conv2D( 128 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(up4)) conv9 = BatchNormalization()( Conv2D( 128 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv9)) up5 = UpSampling2D(size = ( 2 , 2 ))(conv9) #第九层 64,64 conv10 = BatchNormalization()( Conv2D( 64 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(up5)) conv10 = BatchNormalization()( Conv2D( 64 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv10)) # softmax输出层 conv11 = Conv2D( 1 , 1 , padding = 'same' , activation = 'sigmoid' )(conv10) model = Model(inputs = inputs, outputs = conv11) return model |
分类:
Python Study
, AI Related
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)