【631】TensorBoard 简介: TensorFlow 的可视化框架
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | import keras from keras import layers from keras.datasets import imdb from keras.preprocessing import sequence max_features = 2000 max_len = 500 (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words = max_features) x_train = sequence.pad_sequences(x_train, maxlen = max_len) x_test = sequence.pad_sequences(x_test, maxlen = max_len) model = keras.models.Sequential() model.add(layers.Embedding(max_feature, 128 , input_length = max_len, name = 'embed' )) model.add(layers.Conv1D( 32 , 7 , activation = 'relu' )) model.add(layers.MaxPool1D( 5 )) model.add(layers.Conv1D( 32 , 7 , activation = 'relu' )) model.add(layers.GlobalMaxPool1D()) model.add(layers.Dense( 1 )) model.summary() model. compile (optimizer = 'rmsprop' , loss = 'binary_crossentropy' , metrics = [ 'acc' ]) callbacks = [ keras.callbacks.TensorBoard( log_dir = 'my_log_dir' , histogram_freq = 1 , embeddings_freq = 1 , ) ] history = model.fit(x_train, y_train, epochs = 20 , batch_size = 128 , validation_split = 0.2 , callbacks = callbacks) |
分类:
Python Study
, AI Related
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)