【613】U-Net 相关
参考:keras遥感图像Unet语义分割(支持多波段&多类)
参考:憨批的语义分割重制版5——Keras 搭建自己的Unet语义分割平台
参考:U-Net 源码 McDelfino / unet 【国内反而不稳定】
参考:U-Net 源码 alexbnlee/unet【GitHub】
通过 keras API 模型比较容易,有几种实现方式
-
从头到尾实现,这个最直观简单
-
通过 for 循环实现,有些重复的部分
-
通过写函数构建不同的模块
目前看来整个模型实现很容易,但是最开始接触的时候反而是看了很多资料都不太懂,归其原因是对于整体深度学习的理解还不是很到位。目前看来很多模型就是在 U-Net 基础上进行一些改进,包括增加 BatchNormalization 层,或者增加 ResNet 层,或者添加 Attention 层,怎么说呢,慢慢测试吧。
U-Net 模型实现:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | import numpy as np import os import skimage.io as io import skimage.transform as trans import numpy as np from keras.models import * from keras.layers import * from keras.optimizers import * from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras import backend as keras def unet(pretrained_weights = None ,input_size = ( 256 , 256 , 1 )): inputs = Input (input_size) conv1 = Conv2D( 64 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(inputs) conv1 = Conv2D( 64 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv1) pool1 = MaxPooling2D(pool_size = ( 2 , 2 ))(conv1) conv2 = Conv2D( 128 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(pool1) conv2 = Conv2D( 128 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv2) pool2 = MaxPooling2D(pool_size = ( 2 , 2 ))(conv2) conv3 = Conv2D( 256 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(pool2) conv3 = Conv2D( 256 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv3) pool3 = MaxPooling2D(pool_size = ( 2 , 2 ))(conv3) conv4 = Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(pool3) conv4 = Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv4) drop4 = Dropout( 0.5 )(conv4) pool4 = MaxPooling2D(pool_size = ( 2 , 2 ))(drop4) conv5 = Conv2D( 1024 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(pool4) conv5 = Conv2D( 1024 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv5) drop5 = Dropout( 0.5 )(conv5) up6 = Conv2D( 512 , 2 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(UpSampling2D(size = ( 2 , 2 ))(drop5)) merge6 = concatenate([drop4,up6], axis = 3 ) conv6 = Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(merge6) conv6 = Conv2D( 512 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv6) up7 = Conv2D( 256 , 2 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(UpSampling2D(size = ( 2 , 2 ))(conv6)) merge7 = concatenate([conv3,up7], axis = 3 ) conv7 = Conv2D( 256 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(merge7) conv7 = Conv2D( 256 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv7) up8 = Conv2D( 128 , 2 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(UpSampling2D(size = ( 2 , 2 ))(conv7)) merge8 = concatenate([conv2,up8], axis = 3 ) conv8 = Conv2D( 128 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(merge8) conv8 = Conv2D( 128 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv8) up9 = Conv2D( 64 , 2 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(UpSampling2D(size = ( 2 , 2 ))(conv8)) merge9 = concatenate([conv1,up9], axis = 3 ) conv9 = Conv2D( 64 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(merge9) conv9 = Conv2D( 64 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv9) conv9 = Conv2D( 2 , 3 , activation = 'relu' , padding = 'same' , kernel_initializer = 'he_normal' )(conv9) conv10 = Conv2D( 1 , 1 , activation = 'sigmoid' )(conv9) model = Model( input = inputs, output = conv10) model. compile (optimizer = Adam(lr = 1e - 4 ), loss = 'binary_crossentropy' , metrics = [ 'accuracy' ]) #model.summary() if (pretrained_weights): model.load_weights(pretrained_weights) return model |
分类:
AI Related
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
2015-07-16 【169】单位内网打印机设置