【575】连续卷积层(神经网络中的通道 channel)
对于连续的卷积层,filter 的维度是跟输入图像的维度一致
1 2 3 4 5 6 | model = Sequential([ Conv2D( 8 , 3 , input_shape = ( 28 , 28 , 1 ), use_bias = False ), Conv2D( 16 , 3 , use_bias = False ) ]) model.summary() |
输出
1 2 3 4 5 6 7 8 9 10 11 12 | Model: "sequential_1" _________________________________________________________________ Layer ( type ) Output Shape Param # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = conv2d_3 (Conv2D) ( None , 26 , 26 , 8 ) 72 _________________________________________________________________ conv2d_4 (Conv2D) ( None , 24 , 24 , 16 ) 1152 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = Total params: 1 , 224 Trainable params: 1 , 224 Non - trainable params: 0 _________________________________________________________________ |
其中:
-
第一层的filter为 3x3x1x8=72(原始数据是 28x28x1,得到数据 26x26x8)
-
第二层的filter为 3x3x8x16=1152(上一个数据是 26x26x8,得到数据 24x24x16)
- 在计算卷积的时候,将前面的多层分别卷积求和,然后通过激活函数得到一个新的像素值
扩展:
对于多通道输入数据也是类似的,将多通道数据看成卷积后的多层,计算后面卷积的时候,分别进行卷积运算,然后求和,最后进行激活函数。
黄色的 3个 filter,实际上就是一个,分别做卷积再相加,然后得到一个像素值
如果是两个 filter,需要按照如下的设置,黄色的和橙色的
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
2019-06-18 【405】算法时间复杂度和空间复杂度的计算