【520】利用 TextBlob & Vader 进行情感分析
参考:Tutorial: Quickstart - TextBlob (sentiment analysis)
参考:An overview of sentiment analysis python library: TextBlob
参考:Sentiment Analysis: VADER or TextBlob?
1. Installation of TextBlob
Installation is not a big deal here. If you are already using CMD, you have to run this command to install TextBlob. Go to CMD and enter:
1 | pip install textblob |
You need to download corpus first to train the model of TextBlob. You can achieve it using the following command:
1 | python - m textblob.download_corpora |
2. Steps for Sentiment Analysis Python using TextBlob
Here is a sample code of how I used TextBlob in tweets sentiments:
1 2 3 4 5 6 7 8 9 10 11 | from textblob import TextBlob ### My input text is a column from a dataframe that contains tweets. def sentiment(x): sentiment = TextBlob(x) return sentiment.sentiment.polarity tweetsdf[ 'sentiment' ] = tweetsdf[ 'processed_tweets' ]. apply (sentiment) tweetsdf[ 'senti' ][tweetsdf[ 'sentiment' ]> 0 ] = 'positive' tweetsdf[ 'senti' ][tweetsdf[ 'sentiment' ]< 0 ] = 'negative' tweetsdf[ 'senti' ][tweetsdf[ 'sentiment' ] = = 0 ] = 'neutral' |
another example:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | >>> from textblob import TextBlob >>> testimonial = TextBlob( "My name is Alex" ) >>> testimonial.sentiment.polarity 0.0 >>> testimonial = TextBlob( "I feel a little headache" ) >>> testimonial.sentiment.polarity - 0.1875 >>> testimonial = TextBlob( "I can't remember anything" ) >>> testimonial.sentiment.polarity 0.0 >>> testimonial = TextBlob( "I feel so unhappy" ) >>> testimonial.sentiment.polarity - 0.6 >>> testimonial = TextBlob( "I really like this toy" ) >>> testimonial.sentiment.polarity 0.2 >>> testimonial = TextBlob( "I really want this toy" ) >>> testimonial.sentiment.polarity 0.2 >>> testimonial = TextBlob( "I really don't want this toy" ) >>> testimonial.sentiment.polarity 0.2 >>> testimonial = TextBlob( "I really don't like this toy" ) >>> testimonial.sentiment.polarity 0.2 >>> testimonial = TextBlob( "I really hate this toy" ) >>> testimonial.sentiment.polarity - 0.8 |
3. Installation of Vader
Go to CMD and enter:
1 | pip install vaderSentiment |
4. Steps for Sentiment Analysis Python using Vader
1 2 3 4 5 6 7 8 | >>> from nltk.sentiment.vader import SentimentIntensityAnalyzer >>> sid = SentimentIntensityAnalyzer() >>> sid.polarity_scores( "I like this movie" ) { 'neg' : 0.0 , 'neu' : 0.444 , 'pos' : 0.556 , 'compound' : 0.3612 } >>> sid.polarity_scores( "My name is Alex" ) { 'neg' : 0.0 , 'neu' : 1.0 , 'pos' : 0.0 , 'compound' : 0.0 } >>> sid.polarity_scores( "My name is Alex and hate myself" ) { 'neg' : 0.381 , 'neu' : 0.619 , 'pos' : 0.0 , 'compound' : - 0.5719 } |
- compound > 0, positive
- compound < 0, negative
- compound = 0, neutral
1 2 3 4 5 6 7 8 9 10 | >>> def sentiment_vader(x): sentiment = SentimentIntensityAnalyzer() return sentiment.polarity_scores(x)[ 'compound' ] >>> sentiment_vader( 'I like this movie' ) 0.3612 >>> sentiment_vader( 'I donot know what to do now' ) 0.0 >>> sentiment_vader( 'I will go to school very early tomorrow and feel a little terrible' ) - 0.4228 |
分类:
AI Related / NLP
, AI Related
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· .NET10 - 预览版1新功能体验(一)
2018-01-10 【287】◀▶ arcpy 常用类说明
2012-01-10 为小7文件夹右键添加“复制到”“移动到”